Synthesis of high rate performance LiFe1-xMnxPO4/C composites for lithium-ion batteries

被引:43
作者
Ding, Juan [1 ]
Su, Zhi [1 ]
Tian, Hualing [1 ]
机构
[1] Xinjiang Normal Univ, Coll Chem & Chem Engn, Urumqi 830054, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; LiFe1-xMnxPO4/C; Cathode materials; Electrochemical performance; Ion exchange technology; ENHANCED ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; LIFEPO4; NANOPARTICLES; NANOCOMPOSITE;
D O I
10.1016/j.ceramint.2016.04.184
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of LiFe1-xMnxPO4/C composites (x=0, 0.1, 0.3, 0.5, 1) are synthesized via an ion exchange method, utilizing LiOH center dot H2O, FeSO4 center dot 7H(2)O, MnSO4 center dot H2O, Na3PO4 center dot 12H(2)O, and H3PO4 as the raw materials, citric acid as the carbon source, and reductant, and H2O as the solvent. The composites containing Mn have larger lattice parameters compared to pure LiFeMnPO4/C, due to the larger ionic size of Mn2+ compared to Fe2+. The composites also consist of spherical nanoparticles with a thicker carbon coating. LiFe0.9Mn0.1PO4/C exhibited the best electrochemical properties as the cathode in lithium-ion batteries, with a discharge capacity close to the theoretical value of LiFePO4, better capacity retention rate (98.5% vs. 94.5%) and excellent cycle stability. The improvements were attributed to the Mn-complex. Electrochemical impedance spectra demonstrate that the Mn-composites can improve electronic and ionic conductivity, indicating that introduction of Mn is a viable way to improve the conductivity in olivine like LiFePO4 cathode materials, and enhance the battery performance. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:12435 / 12440
页数:6
相关论文
共 31 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :75-78
[3]   A Review of Nanostructured Lithium Ion Battery Materials via Low Temperature Synthesis [J].
Chen, Jiajun .
RECENT PATENTS ON NANOTECHNOLOGY, 2013, 7 (01) :2-12
[4]   Enhanced electrochemical properties of LiFe1-xMnxPO4/C composites synthesized from FePO4•2H2O nanocrystallites [J].
Chen, Li ;
Yuan, Yong-Qiang ;
Feng, Xia ;
Li, Ming-Wei .
JOURNAL OF POWER SOURCES, 2012, 214 :344-350
[5]   Synthesis and characterization of 0.95LiMn0.95Fe0.05PO4•0.05Li3V2(PO4)3 nanocomposite by sol-gel method [J].
Chen, Lin ;
Yan, Bo ;
Wang, Haiying ;
Jiang, Xuefan ;
Yang, Gang .
JOURNAL OF POWER SOURCES, 2015, 287 :316-322
[6]   Template-directed materials for rechargeable lithium-ion batteries [J].
Cheng, Fangyi ;
Tao, Zhanliang ;
Liang, Jing ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2008, 20 (03) :667-681
[7]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[8]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[9]  
Ding J., 2016, NEW J CHEM
[10]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954