Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries

被引:90
作者
Li, Q. [1 ]
Yu, Y. [1 ]
Luo, Kai H. [2 ]
机构
[1] Cent S Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
IMMISCIBLE DROPLET; 2-PHASE FLOW; MODEL; DISPLACEMENT; EVAPORATION; SURFACES; FLUID;
D O I
10.1103/PhysRevE.100.053313
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The pseudopotential multiphase lattice Boltzmann (LB) model is a very popular model in the LB community for simulating multiphase flows. When the multiphase modeling involves a solid boundary, a numerical scheme is required to simulate the contact angle at the solid boundary. In this work, we aim at investigating the implementation of contact angles in the pseudopotential LB simulations with curved boundaries. In the pseudopotential LB model, the contact angle is usually realized by employing a solid-fluid interaction or specifying a constant virtual wall density. However, it is shown that the solid-fluid interaction scheme yields very large spurious currents in the simulations involving curved boundaries, while the virtual-density scheme produces an unphysical thick mass-transfer layer near the solid boundary although it gives much smaller spurious currents. We also extend the geometric-formulation scheme in the phase-field method to the pseudopotential LB model. Nevertheless, in comparison with the solid-fluid interaction scheme and the virtual-density scheme, the geometric-formulation scheme is relatively difficult to implement for curved boundaries and cannot be directly applied to three-dimensional space. By analyzing the features of these three schemes, we propose an improved virtual-density scheme to implement contact angles in the pseudopotential LB simulations with curved boundaries, which does not suffer from a thick mass-transfer layer near the solid boundary and retains the advantages of the original virtual-density scheme, i.e., simplicity, easiness for implementation, and low spurious currents.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]   Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data [J].
Akai, Takashi ;
Bijeljic, Branko ;
Blunt, Martin J. .
ADVANCES IN WATER RESOURCES, 2018, 116 :56-66
[3]  
[Anonymous], 2013, THESIS TONGJI U CHIN
[4]   Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle [J].
Benzi, R. ;
Biferale, L. ;
Sbragaglia, M. ;
Succi, S. ;
Toschi, F. .
PHYSICAL REVIEW E, 2006, 74 (02)
[5]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[6]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[7]   Mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact-angle hysteresis [J].
Colosqui, Carlos E. ;
Kavousanakis, Michail E. ;
Papathanasiou, Athanasios G. ;
Kevrekidis, Ioannis G. .
PHYSICAL REVIEW E, 2013, 87 (01)
[8]   Multiple-relaxation-time lattice Boltzmann models in three dimensions [J].
d'Humières, D ;
Ginzburg, I ;
Krafczyk, M ;
Lallemand, P ;
Luo, LS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792) :437-451
[9]   Wetting condition in diffuse interface simulations of contact line motion [J].
Ding, Hang ;
Spelt, Peter D. M. .
PHYSICAL REVIEW E, 2007, 75 (04)
[10]  
Huang H., 2015, Multiphase Lattice Boltzmann Methods: Theory and Application