Neurological Status Classification Using Convolutional Neural Network

被引:0
作者
Jaloli, Mehrad [1 ]
Choudhary, Divya [2 ]
Cescon, Marzia [1 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77004 USA
[2] Univ Oxford, Dept Biochem, South Pk Rd, Oxford OX1 3QU, England
关键词
Assistive devices; Cognitive control; Potential impact of automation and open problems; Deep neural network; Physiological signal processing; Neurological status assessment; STRESS;
D O I
10.1016/j.ifacol.2021.04.193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study we show that a Convolutional Neural Network (CNN) model is able to accurately discriminate between 4 different phases of neurological status in a non-Electroencephalogram (EEG) dataset recorded in an experiment in which subjects are exposed to physical, cognitive and emotional stress. We demonstrate that the proposed model is able to obtain 99.99% Area Under the Curve (AUC) of Receiver Operation characteristic (ROC) and 99.82% classification accuracy on the test dataset. Furthermore, for comparison, we show that our models outperforms traditional classification methods such as SVM, and RF. Finally, we show the advantage of CNN models, in comparison to other methods, in robustness to noise by 97.46% accuracy on a noisy dataset. Copyright (C) 2020 The Authors.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 27 条
[1]   Mental Stress Quantification Using EEG Signals [J].
Al-Shargie, F. M. ;
Tang, T. B. ;
Badruddin, N. ;
Kiguchi, M. .
INTERNATIONAL CONFERENCE FOR INNOVATION IN BIOMEDICAL ENGINEERING AND LIFE SCIENCES, ICIBEL2015, 2016, 56 :15-19
[2]  
[Anonymous], 2015, Tiny ImageNet Visual Recognition Challenge., DOI DOI 10.1109/ICCV.2015.123
[3]   On the time series K-nearest neighbor classification of abnormal brain activity [J].
Chaovalitwongse, Wanpracha Art ;
Sachdeo, Rajesh C. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2007, 37 (06) :1005-1016
[4]  
Chen L, 2004, P 30 INT C VER LARG, V30, P792, DOI DOI 10.1016/B978-012088469-8.50070-X
[5]  
Choudhary D, 2020, INT C ENG MED BIOL S
[6]  
Cogan D, 2014, IEEE ENG MED BIO, P5748, DOI 10.1109/EMBC.2014.6944933
[7]   A time series forest for classification and feature extraction [J].
Deng, Houtao ;
Runger, George ;
Tuv, Eugene ;
Vladimir, Martyanov .
INFORMATION SCIENCES, 2013, 239 :142-153
[8]   Mapping stress networks using functional magnetic resonance imaging in awake animals [J].
Dopfel, David ;
Zhang, Nanyin .
NEUROBIOLOGY OF STRESS, 2018, 9 :251-263
[9]   Implicit Life Event Discovery From Call Transcripts Using Temporal Input Transformation Network [J].
Ebadi, Nima ;
Lwowski, Brandon ;
Jaloli, Mehrad ;
Rad, Paul .
IEEE ACCESS, 2019, 7 :172178-172189
[10]   The impact of cognitive distortions, stress, and adherence on metabolic control in youths with type 1 diabetes [J].
Farrell, SP ;
Hains, AA ;
Davies, WH ;
Smith, P ;
Parton, E .
JOURNAL OF ADOLESCENT HEALTH, 2004, 34 (06) :461-467