A new Jacobi spectral collocation method for solving 1+1 fractional Schrodinger equations and fractional coupled Schrodinger systems

被引:54
作者
Bhrawy, A. H. [1 ,2 ]
Doha, E. H. [3 ]
Ezz-Eldien, S. S. [4 ]
Van Gorder, Robert A. [5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[4] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt
[5] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2014年 / 129卷 / 12期
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; DISCONTINUOUS GALERKIN METHOD; DIFFUSION-EQUATIONS; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; APPROXIMATIONS; ORDER; ALGORITHM; SCHEMES; MODELS;
D O I
10.1140/epjp/i2014-14260-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrodinger equation (T-FSE) and the space-fractional Schrodinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrodinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.
引用
收藏
页数:21
相关论文
共 61 条
  • [1] Approximate Solutions of Non-linear Fractional Schrodinger Equation Via Differential Transform Method and Modified Differential Transform Method
    Aruna, K.
    Kanth, A. S. V. Ravi
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2013, 36 (02): : 201 - 213
  • [2] Multi-symplectic integration of coupled non-linear Schrodinger system with soliton solutions
    Aydin, Ayhan
    Karasoezen, Buelent
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (05) : 864 - 882
  • [3] A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations
    Bhrawy, A. H.
    Doha, E. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 142 - 156
  • [4] A quadrature tau method for fractional differential equations with variable coefficients
    Bhrawy, A. H.
    Alofi, A. S.
    Ezz-Eldien, S. S.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (12) : 2146 - 2152
  • [5] A shifted Legendre spectral method for fractional-order multi-point boundary value problems
    Bhrawy, Ali H.
    Al-Shomrani, Mohammed M.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [6] Analog fractional order controller in temperature and motor control applications
    Bohannan, Gary W.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1487 - 1498
  • [7] EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS
    BRADLEY, CC
    SACKETT, CA
    TOLLETT, JJ
    HULET, RG
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (09) : 1687 - 1690
  • [8] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [9] Das S., 2008, Functional Fractional Calculus for System Identification and Controls
  • [10] de Villiers J., 2012, MATH APPROXIMATION