Comparison-type theorems for Ito processes and differentially subordinated semimartingales

被引:0
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2013年 / 10卷 / 01期
关键词
Semimartingale; Ito process; strong differential subordination; SHARP INEQUALITIES; MARTINGALE TRANSFORMS; SUBMARTINGALE; TIME;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let alpha >= 0 and let X, Y be Ito processes dX(t) = phi(t) dB(t) + psi(t) dt, dY(t) = zeta(t) dB(t) + xi(t) dt such that X-0 = x, Y-0 = y, vertical bar phi vertical bar >= vertical bar zeta vertical bar and alpha psi >= vertical bar xi vertical bar. We determine the best universal constant U alpha( x, y) such that P(sup(t)Y(t) >= 0) <= parallel to X+parallel to(1) + U-alpha(x, y). As an application, we compute, for any t is an element of [0, 1] and beta is an element of R, the number L(x, y, t) = inf{parallel to X+parallel to(1) : P(Y* >= beta) >= t}. We also study these problems for a wider class of alpha-subordinated semimartingales and establish a related estimate for smooth functions on Euclidean domains.
引用
收藏
页码:391 / 414
页数:24
相关论文
共 22 条