Target Tracking and Classification Directly in Compressive Measurement for Low Quality Videos

被引:9
作者
Kwan, Chiman [1 ]
Chou, Bryan [1 ]
Yang, Jonathan [1 ]
Tran, Trac [2 ]
机构
[1] Appl Res LLC, 9605 Med Ctr Dr, Rockville, MD 20850 USA
[2] Johns Hopkins Univ, Baltimore, MD USA
来源
PATTERN RECOGNITION AND TRACKING XXX | 2019年 / 10995卷
关键词
Deep learning; compressive measurements; OMP; ALM-L1; YOLO; Res-Net; optical videos;
D O I
10.1117/12.2518496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled to generate the compressive measurements. Even in such special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using optical videos in the SENSIAC database demonstrated the efficacy of the proposed approach.
引用
收藏
页数:11
相关论文
共 22 条
  • [1] [Anonymous], 2012, EUR C COMP VIS
  • [2] [Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124
  • [3] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [4] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [5] Farhadi A., 2018, P IEEE C COMP VIS PA
  • [6] Kwan C., 2018, 15 INT S NEUR NETW
  • [7] Kwan C., 2019, PATT REC TRACK 30 C, VXXX
  • [8] Kwan C., 2019, J SIGNAL IMAGE VIDEO
  • [9] Kwan C, 2018, 2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), P51, DOI 10.1109/UEMCON.2018.8796778
  • [10] Efficient Anomaly Detection Algorithms for Summarizing Low Quality Videos
    Kwan, Chiman
    Zhou, Jin
    Wang, Zheshen
    Li, Baoxin
    [J]. PATTERN RECOGNITION AND TRACKING XXIX, 2018, 10649