Comparison of Different Dynamic Monte Carlo Methods for the Simulation of Olefin Polymerization

被引:11
作者
Brandao, Amanda L. T. [1 ]
Soares, Joao B. P. [2 ]
Pinto, Jose C. [1 ]
Alberton, Andre L. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 68502, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[3] Univ Estado Rio de Janeiro, Inst Quim, BR-20550900 Rio De Janeiro, RJ, Brazil
关键词
Monte Carlo methods; polymer reaction engineering; polymerization modeling and simulation; CHEMICALLY REACTING SYSTEMS; EXACT STOCHASTIC SIMULATION; MOLECULAR-WEIGHT; COPOLYMERIZATION; DISTRIBUTIONS; POLYOLEFINS; EVOLUTION;
D O I
10.1002/masy.201500111
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, Monte Carlo methods were used to simulate olefin polymerization with coordination catalysts: the Direct method (DM), the First Reaction method (FRM), the Next Reaction method (NRM), and the t-Leaping method. The first three methods are exact stochastic simulation algorithms (SSA), while the t-Leaping is an approximate method with faster computation times. It is shown that all four methods predict similar polymer microstructures, but require significantly different computation times. The t-Leaping method is the fastest, being recommended when complex polymerization mechanisms are being investigated. The NRM, because of its intelligent data storage and handling approach, is the best among the SSA.
引用
收藏
页码:160 / 178
页数:19
相关论文
共 19 条
  • [1] Dynamic Monte Carlo simulation of atom-transfer radical polymerization
    Al-Harthi, Mamdouh
    Soares, Joao B. R.
    Simon, Leonardo C.
    [J]. MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (08) : 993 - 1003
  • [2] Beigzadeh D, 1999, J APPL POLYM SCI, V71, P1753, DOI 10.1002/(SICI)1097-4628(19990314)71:11<1753::AID-APP5>3.0.CO
  • [3] 2-5
  • [4] When Polymer Reaction Engineers Play Dice: Applications of Monte Carlo Models in PRE
    Brandao, Amanda L. T.
    Soares, Joao B. P.
    Pinto, Jose Carlos
    Alberton, Andre L.
    [J]. MACROMOLECULAR REACTION ENGINEERING, 2015, 9 (03) : 141 - 185
  • [5] Efficient step size selection for the tau-leaping simulation method
    Cao, Y
    Gillespie, DT
    Petzold, LR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (04)
  • [6] Avoiding negative populations in explicit Poisson tau-leaping
    Cao, Y
    Gillespie, DT
    Petzold, LR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (05)
  • [7] Efficient formulation of the stochastic simulation algorithm for chemically reacting systems
    Cao, Y
    Li, H
    Petzold, L
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (09) : 4059 - 4067
  • [8] A parallelised high performance Monte Carlo simulation approach for complex polymerisation kinetics
    Chaffey-Millar, Hugh
    Stewart, Don
    Chakravarty, Manuel M. T.
    Keller, Gabriele
    Barner-Kowollik, Christopher
    [J]. MACROMOLECULAR THEORY AND SIMULATIONS, 2007, 16 (06) : 575 - 592
  • [9] Efficient exact stochastic simulation of chemical systems with many species and many channels
    Gibson, MA
    Bruck, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (09) : 1876 - 1889
  • [10] GENERAL METHOD FOR NUMERICALLY SIMULATING STOCHASTIC TIME EVOLUTION OF COUPLED CHEMICAL-REACTIONS
    GILLESPIE, DT
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) : 403 - 434