Quantitative Mode Stability for the Wave Equation on the Kerr Spacetime

被引:49
作者
Shlapentokh-Rothman, Yakov [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 01期
基金
美国国家科学基金会;
关键词
BLACK-HOLE; DECAY; SCHWARZSCHILD; PERTURBATIONS; RESONANCES; ENERGY;
D O I
10.1007/s00023-014-0315-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a quantitative refinement and simple proofs of mode stability type statements for the wave equation on Kerr backgrounds in the full sub-extremal range (|a| < M). As an application, we are able to quantitatively control the energy flux along the horizon and null infinity and establish integrated local energy decay for solutions to the wave equation in any bounded-frequency regime.
引用
收藏
页码:289 / 345
页数:57
相关论文
共 36 条
[31]   PERTURBATIONS OF A ROTATING BLACK HOLE .2. DYNAMICAL STABILITY OF KERR METRIC [J].
PRESS, WH ;
TEUKOLSKY, SA .
ASTROPHYSICAL JOURNAL, 1973, 185 (02) :649-673
[32]  
Reed M., 1978, Methods of Modern Mathematical Physics IV: Analysis of Operators
[33]   A Local Energy Estimate on Kerr Black Hole Backgrounds [J].
Tataru, Daniel ;
Tohaneanu, Mihai .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (02) :248-292
[34]  
Tohaneanu M, 2012, T AM MATH SOC, V364, P689
[35]   ON QUADRATIC FIRST INTEGRALS OF GEODESIC EQUATIONS FOR TYPE 22 SPACETIMES [J].
WALKER, M ;
PENROSE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (04) :265-+
[36]   MODE-STABILITY OF THE KERR BLACK-HOLE [J].
WHITING, BF .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) :1301-1305