Extracting continuum-like deformation and stress from molecular dynamics simulations

被引:25
作者
Zhang, Lili [3 ]
Jasa, John [1 ]
Gazonas, George [2 ]
Jerusalem, Antoine [3 ]
Negahban, Mehrdad [1 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
[3] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
欧洲研究理事会;
关键词
Molecular dynamics; Multi-scale; Deformation; Deformation gradients; Stress; Minimization; ATOMIC-LEVEL STRESS; POTASSIUM CHANNEL; SYSTEM EQUIVALENCE; VIRIAL STRESS; DEFINITIONS; TENSOR; MD;
D O I
10.1016/j.cma.2014.10.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present methods that use results from molecular dynamics (MD) simulations to construct continuum parameters, such as deformation gradient and Cauchy stress, from all or any part of an MD system. These parameters are based on the idea of minimizing the difference between MD measures for deformation and traction and their continuum counterparts. The procedures should be applicable to non-equilibrium and inhomogeneous systems, and to any part of a system, such as a polymer chain. The resulting procedures provide methods to obtain first and higher order deformation gradients associated with any subset of the MD system, and associated expressions for the Cauchy and nominal stresses. As these procedures are independent of the type of interactions, they can be used to study any MD simulation in a manner consistent with continuum mechanics and to extract information exploitable at the continuum scale to help construct continuum-level constitutive models. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1010 / 1031
页数:22
相关论文
共 39 条
[1]   A Unified Interpretation of Stress in Molecular Systems [J].
Admal, Nikhil Chandra ;
Tadmor, E. B. .
JOURNAL OF ELASTICITY, 2010, 100 (1-2) :63-143
[2]   Changes in internal stress distributions during yielding of square prismatic gold nano-specimens [J].
Batra, R. C. ;
Pacheco, A. A. .
ACTA MATERIALIA, 2010, 58 (08) :3131-3161
[3]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[4]   A mathematical homogenization perspective of virial stress [J].
Chen, Wen ;
Fish, Jacob .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (02) :189-207
[5]   ATOMIC-LEVEL STRESS IN AN INHOMOGENEOUS SYSTEM [J].
CHEUNG, KS ;
YIP, S .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (10) :5688-5690
[6]   Potassium channel structures [J].
Choe, S .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (02) :115-121
[7]   On the notion of average mechanical properties in MD simulation via homogenization [J].
Costanzo, F ;
Gray, GL ;
Andia, PC .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (04) :S333-S345
[8]   The definitions of effective stress and deformation gradient for use in MD: Hill's macro-homogeneity and the virial theorem [J].
Costanzo, F ;
Gray, GL ;
Andia, PC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2005, 43 (07) :533-555
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   A deformation gradient tensor and strain tensors for atomistic simulations [J].
Gullett, P. M. ;
Horstemeyer, M. F. ;
Baskes, M. I. ;
Fang, H. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (01)