Backpropagation of pseudoerrors: Neural networks that are adaptive to heterogeneous noise

被引:31
作者
Ding, ADA [1 ]
He, XL
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[2] EMC Corp, Hopkinton, MA 01748 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2003年 / 14卷 / 02期
关键词
backpropagation; transformation model;
D O I
10.1109/TNN.2003.809428
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks are used for prediction model in many applications. The backpropagation algorithm used in most cases corresponds to a statistical nonlinear. regression model assuming the constant noise level. Many proposed prediction intervals in the literature so far also assume the constant noise level. There are no prediction intervals in the literature that are accurate under varying noise level and skewed noises. We propose prediction intervals that can automatically adjust to varying noise levels by applying the regression transformation model of Carroll and Rupert. The parameter estimation under the transformation model with power. transformations is shown to be equivalent to the backpropagation of pseudoerrors. This new backpropagation algorithm preserves the ability of online training for neural networks.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 14 条
[1]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[2]  
Carroll R. J., 1988, TRANSFORMATION WEIGH
[3]   Neural network based short-term load forecasting using weather compensation [J].
Chow, TWS ;
Leung, CT .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) :1736-1742
[4]   Prediction intervals for neural networks via nonlinear regression [J].
De Veaux, RD ;
Schumi, J ;
Schweinsberg, J ;
Ungar, LH .
TECHNOMETRICS, 1998, 40 (04) :273-282
[5]  
Heskes T, 1997, ADV NEUR IN, V9, P176
[6]   Prediction intervals for artificial neural networks [J].
Hwang, JTG ;
Ding, AA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :748-757
[7]  
Kuligowski RJ, 1998, MON WEATHER REV, V126, P470, DOI 10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO
[8]  
2
[9]   A PRACTICAL BAYESIAN FRAMEWORK FOR BACKPROPAGATION NETWORKS [J].
MACKAY, DJC .
NEURAL COMPUTATION, 1992, 4 (03) :448-472
[10]  
Nix D. A., 1995, Advances in Neural Information Processing Systems 7, P489