Asymptotic confidence intervals for Poisson regression

被引:6
作者
Kohler, Michael
Krzyzak, Adam
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
[2] Univ Saarland, Fachrichtung Math 61, D-66041 Saarbrucken, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson regression; local polynomial kernel estimate; confidence interval;
D O I
10.1016/j.jmva.2006.07.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X, Y) be a R-d x N-0-valued random vector where the conditional distribution of Y given X = x is a Poisson distribution with mean m(x). We estimate m by a local polynomial kernel estimate defined by maximizing a localized log-likelihood function. We use this estimate of m(x) to estimate the conditional distribution of Y given X = x by a corresponding Poisson distribution and to construct confidence intervals of level v of Y given X = x. Under mild regularity conditions on m (x) and on the distribution of X we show strong convergence of the integrated L-1 distance between Poisson distribution and its estimate. We also demonstrate that the corresponding confidence interval has asymptotically (i.e., for sample size tending to infinity) level alpha, and that the probability that the length of this confidence interval deviates from the optimal length by more than one converges to zero with the number of samples tending to infinity. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1072 / 1094
页数:23
相关论文
共 38 条