New values for the bipartite Ramsey number of the four-cycle versus stars

被引:6
作者
Hatala, Imre [1 ]
Heger, Tamas [2 ]
Mattheus, Sam [3 ]
机构
[1] Eotvos Lorand Univ, Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Comp Sci, ELKH ELTE Geometr & Algebra Combinator Res Grp, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
[3] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Ramsey number; Quadrilateral-free; Projective plane; Incidence graph; Marginal set; GRAPHS; BOUNDS; GIRTH; C-4;
D O I
10.1016/j.disc.2021.112320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide new values of the bipartite Ramsey number R-B(C-4, K-1,K-n) using induced subgraphs of the incidence graph of a projective plane. The approach, based on deleting subplanes of projective planes, has been used in related extremal problems and allows us to unify previous results and extend them. More importantly, using deep stability results on 2 mod p sets and double blocking sets, we can show some of the limits of this technique when the projective plane is Desarguesian of large enough square order. Finally, we also disprove two conjectures about R-B(C-4, K-1,K-n). (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:14
相关论文
共 32 条
[1]  
[Anonymous], 1968, THEORY GRAPHS
[2]   Constructions of Small Regular Bipartite Graphs of Girth 6 [J].
Araujo-Pardo, G. ;
Balbuena, Camino .
NETWORKS, 2011, 57 (02) :121-127
[3]   ELLIPTIC SEMIPLANE [J].
BAKER, RD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (02) :193-195
[4]   On regular induced subgraphs of generalized polygons [J].
Bamberg, John ;
Bishnoi, Anurag ;
Royle, Gordon F. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 :254-275
[5]   Multiple blocking sets in PG(n, q), n≥3 [J].
Barát, J ;
Storme, L .
DESIGNS CODES AND CRYPTOGRAPHY, 2004, 33 (01) :5-21
[6]  
Beutelspracher A., 1990, MATEMATICHE, V45, P25
[7]   GRAPHS WITH EVEN GIRTH AND SMALL EXCESS [J].
BIGGS, NL ;
ITO, T .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (JUL) :1-10
[8]   THE NONEXISTENCE OF CERTAIN FINITE PROJECTIVE PLANES [J].
BRUCK, RH ;
RYSER, HJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (01) :88-93
[9]   K2,2-K1,n and K2,n-K2,n bipartite Ramsey numbers [J].
Carnielli, WA ;
Carmelo, ELM .
DISCRETE MATHEMATICS, 2000, 223 (1-3) :83-92
[10]  
Collins A.F., 2016, J. Algorithms Comput., V47, P63