Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter

被引:71
作者
Hu, Yaozhong [1 ]
Nualart, David [2 ]
Zhou, Hongjuan [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Kansas, Dept Math, 405 Snow Hall, Lawrence, KS 66045 USA
关键词
Fractional Brownian motion; Fractional Ornstein-Uhlenbeck processes; Parameter estimation; Fourth moment theorem; Central limit theorem; Noncentral limit theorem; CENTRAL LIMIT-THEOREMS; INDEX;
D O I
10.1007/s11203-017-9168-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the least squares estimator (LSE) for the drift parameter of an Ornstein-Uhlenbeck process driven by fractional Brownian motion, whose observations can be made either continuously or at discrete time instants. A central limit theorem is proved when the Hurst parameter H is an element of (0, 3/4] and a noncentral limit theorem is proved for H. (3/4, 1). Thus, the open problem left in the previous paper (Hu and Nualart in Stat Probab Lett 80(11-12):1030-1038, 2010) is completely solved, where a central limit theorem for the least squares estimator is proved for H. [1/2, 3/4). The LSE is then used to study the asymptotics for other alternative estimators, such as the ergodic type estimator.
引用
收藏
页码:111 / 142
页数:32
相关论文
共 21 条
[1]   SHARP LARGE DEVIATIONS FOR THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Bercu, B. ;
Coutin, L. ;
Savy, N. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) :575-610
[2]   Estimation in models driven by fractional Brownian motion [J].
Berzin, Corinne ;
Leon, Jose R. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02) :191-213
[3]   Variance estimator for fractional diffusions with variance and drift depending on time [J].
Berzin, Corinne ;
Latour, Alain ;
Leon, Jose R. .
ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01) :926-1016
[4]  
Brouste A., 2010, STAT INFERENCE STOCH, V13, P1, DOI [DOI 10.1007/s11203-009-9035-x, DOI 10.1007/S11203-009-9035-X, 10.1007/s11203-009-9035-x]
[5]   Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2) [J].
Cheridito, P ;
Nualart, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06) :1049-1081
[6]  
Cheridito P, 2003, ELECTRON J PROBAB, V8, P1
[7]   ON STRATONOVICH AND SKOROHOD STOCHASTIC CALCULUS FOR GAUSSIAN PROCESSES [J].
Hu, Yaozhong ;
Jolis, Maria ;
Tindel, Samy .
ANNALS OF PROBABILITY, 2013, 41 (3A) :1656-1693
[8]   Parameter estimation for fractional Ornstein-Uhlenbeck processes [J].
Hu, Yaozhong ;
Nualart, David .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) :1030-1038
[9]   Quadratic variations and estimation of the local Holder index of a Gaussian process [J].
Istas, J ;
Lang, G .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (04) :407-436
[10]  
Kleptsyna M., 2002, Statistical Inference for Stochastic Processes, V5, P229, DOI DOI 10.1023/A:1021220818545