Structural mechanism of the active bicarbonate transporter from cyanobacteria

被引:66
作者
Wang, Chengcheng [1 ,2 ]
Sun, Bo [3 ]
Zhang, Xue [1 ,2 ]
Huang, Xiaowei [1 ,2 ]
Zhang, Minhua [1 ]
Guo, Hui [1 ]
Chen, Xin [1 ,2 ]
Huang, Fang [4 ]
Chen, Taiyu [4 ]
Mi, Hualing [1 ]
Yu, Fang [5 ]
Liu, Lu-Ning [4 ]
Zhang, Peng [1 ]
机构
[1] Chinese Acad Sci, Natl Key Lab Plant Mol Genet, CAS Ctr Excellence Mol Plant Sci, Inst Plant Physiol & Ecol,Shanghai Inst Biol Sci, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
[4] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[5] Shanghai Normal Univ, Coll Life Sci, Shanghai Key Lab Plant Mol Sci, Shanghai, Peoples R China
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金;
关键词
RENAL TUBULAR-ACIDOSIS; STAS DOMAIN; FUNCTIONAL-CHARACTERIZATION; INCREASE PHOTOSYNTHESIS; SULFATE TRANSPORTER; ANION TRANSPORTERS; CRYSTAL-STRUCTURE; MUTATIONS; MEMBRANE; FAMILY;
D O I
10.1038/s41477-019-0538-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Bicarbonate transporters play essential roles in pH homeostasis in mammals and photosynthesis in aquatic photoautotrophs. A number of bicarbonate transporters have been characterized, among which is BicA-a low-affinity, high-flux SLC26-family bicarbonate transporter involved in cyanobacterial CO2-concentrating mechanisms (CCMs) that accumulate CO2 and improve photosynthetic carbon fixation. Here, we report the three-dimensional structure of BicA from Synechocystis sp. PCC6803. Crystal structures of the transmembrane domain (BicA (TM)) and the cytoplasmic STAS domain (BicA(STAS)) of BicA were solved. BicA (TM) was captured in an inward-facing HCO3--bound conformation and adopts a '7+7' fold monomer. HCO3- binds to a cytoplasm-facing hydrophilic pocket within the membrane. BicA(STAS) is assembled as a compact homodimer structure and is required for the dimerization of BicA. The dimeric structure of BicA was further analysed using cryo-electron microscopy and physiological analysis of the full-length BicA, and may represent the physiological unit of SLC26-family transporters. Comparing the BicA (TM) structure with the outward-facing transmembrane domain structures of other bicarbonate transporters suggests an elevator transport mechanism that is applicable to the SLC26/4 family of sodium-dependent bicarbonate transporters. This study advances our knowledge of the structures and functions of cyanobacterial bicarbonate transporters, and will inform strategies for bioengineering functional BicA in heterologous organisms to increase assimilation of CO2.
引用
收藏
页码:1184 / +
页数:19
相关论文
共 70 条
[21]   Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family [J].
Geertsma, Eric R. ;
Chang, Yung-Ning ;
Shaik, Farooque R. ;
Neldner, Yvonne ;
Pardon, Els ;
Steyaert, Jan ;
Dutzler, Raimund .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (10) :803-808
[22]   Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters [J].
Gorbunov, Dmitry ;
Sturlese, Mattia ;
Nies, Florian ;
Kluge, Murielle ;
Bellanda, Massimo ;
Battistutta, Roberto ;
Oliver, Dominik .
NATURE COMMUNICATIONS, 2014, 5
[23]   Assessment of prestin self-association using fluorescence resonance energy transfer [J].
Greeson, Jennifer N. ;
Organ, Louise E. ;
Pereira, Fred A. ;
Raphael, Robert M. .
BRAIN RESEARCH, 2006, 1091 :140-150
[24]   Roles of RbcX in Carboxysome Biosynthesis in the Cyanobacterium Synechococcus elongatus PCC7942 [J].
Huang, Fang ;
Vasieva, Olga ;
Sun, Yaqi ;
Faulkner, Matthew ;
Dykes, Gregory F. ;
Zhao, Ziyu ;
Liu, Lu-Ning .
PLANT PHYSIOLOGY, 2019, 179 (01) :184-194
[25]   CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1 [J].
Huynh, Kevin W. ;
Jiang, Jiansen ;
Abuladze, Natalia ;
Tsirulnikov, Kirill ;
Kao, Liyo ;
Shao, Xuesi ;
Newman, Debra ;
Azimov, Rustam ;
Pushkin, Alexander ;
Zhou, Z. Hong ;
Kurtz, Ira .
NATURE COMMUNICATIONS, 2018, 9
[26]   Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities [J].
Igarashi, T ;
Inatomi, J ;
Sekine, T ;
Cha, SH ;
Kanai, Y ;
Kunimi, M ;
Tsukamoto, K ;
Satoh, H ;
Shimadzu, M ;
Tozawa, F ;
Mori, T ;
Shiobara, M ;
Seki, G ;
Endou, H .
NATURE GENETICS, 1999, 23 (03) :264-266
[27]  
JENNINGS ML, 1992, J BIOL CHEM, V267, P13964
[28]   THE GENE FOR CONGENITAL CHLORIDE DIARRHEA MAPS CLOSE TO BUT IS DISTINCT FROM THE GENE FOR CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR [J].
KERE, J ;
SISTONEN, P ;
HOLMBERG, C ;
DELACHAPELLE, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10686-10689
[29]   Assembly, function and evolution of cyanobacterial carboxysomes [J].
Kerfeld, Cheryl A. ;
Melnicki, Matthew R. .
CURRENT OPINION IN PLANT BIOLOGY, 2016, 31 :66-75
[30]   Gating of CFTR by the STAS domain of SLC26 transporters [J].
Ko, SBH ;
Zeng, WZ ;
Dorwart, MR ;
Luo, X ;
Kim, KH ;
Millen, L ;
Goto, H ;
Naruse, S ;
Soyombo, A ;
Thomas, PJ ;
Muallem, S .
NATURE CELL BIOLOGY, 2004, 6 (04) :343-350