Structural mechanism of the active bicarbonate transporter from cyanobacteria

被引:66
作者
Wang, Chengcheng [1 ,2 ]
Sun, Bo [3 ]
Zhang, Xue [1 ,2 ]
Huang, Xiaowei [1 ,2 ]
Zhang, Minhua [1 ]
Guo, Hui [1 ]
Chen, Xin [1 ,2 ]
Huang, Fang [4 ]
Chen, Taiyu [4 ]
Mi, Hualing [1 ]
Yu, Fang [5 ]
Liu, Lu-Ning [4 ]
Zhang, Peng [1 ]
机构
[1] Chinese Acad Sci, Natl Key Lab Plant Mol Genet, CAS Ctr Excellence Mol Plant Sci, Inst Plant Physiol & Ecol,Shanghai Inst Biol Sci, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
[4] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[5] Shanghai Normal Univ, Coll Life Sci, Shanghai Key Lab Plant Mol Sci, Shanghai, Peoples R China
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金;
关键词
RENAL TUBULAR-ACIDOSIS; STAS DOMAIN; FUNCTIONAL-CHARACTERIZATION; INCREASE PHOTOSYNTHESIS; SULFATE TRANSPORTER; ANION TRANSPORTERS; CRYSTAL-STRUCTURE; MUTATIONS; MEMBRANE; FAMILY;
D O I
10.1038/s41477-019-0538-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Bicarbonate transporters play essential roles in pH homeostasis in mammals and photosynthesis in aquatic photoautotrophs. A number of bicarbonate transporters have been characterized, among which is BicA-a low-affinity, high-flux SLC26-family bicarbonate transporter involved in cyanobacterial CO2-concentrating mechanisms (CCMs) that accumulate CO2 and improve photosynthetic carbon fixation. Here, we report the three-dimensional structure of BicA from Synechocystis sp. PCC6803. Crystal structures of the transmembrane domain (BicA (TM)) and the cytoplasmic STAS domain (BicA(STAS)) of BicA were solved. BicA (TM) was captured in an inward-facing HCO3--bound conformation and adopts a '7+7' fold monomer. HCO3- binds to a cytoplasm-facing hydrophilic pocket within the membrane. BicA(STAS) is assembled as a compact homodimer structure and is required for the dimerization of BicA. The dimeric structure of BicA was further analysed using cryo-electron microscopy and physiological analysis of the full-length BicA, and may represent the physiological unit of SLC26-family transporters. Comparing the BicA (TM) structure with the outward-facing transmembrane domain structures of other bicarbonate transporters suggests an elevator transport mechanism that is applicable to the SLC26/4 family of sodium-dependent bicarbonate transporters. This study advances our knowledge of the structures and functions of cyanobacterial bicarbonate transporters, and will inform strategies for bioengineering functional BicA in heterologous organisms to increase assimilation of CO2.
引用
收藏
页码:1184 / +
页数:19
相关论文
共 70 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity [J].
Alguel, Yilmaz ;
Amillis, Sotiris ;
Leung, James ;
Lambrinidis, George ;
Capaldi, Stefano ;
Scull, Nicola J. ;
Craven, Gregory ;
Iwata, So ;
Armstrong, Alan ;
Mikros, Emmanuel ;
Diallinas, George ;
Cameron, Alexander D. ;
Byrne, Bernadette .
NATURE COMMUNICATIONS, 2016, 7
[3]   Bicarbonate Transport in Health and Disease [J].
Alka, Kumari ;
Casey, Joseph R. .
IUBMB LIFE, 2014, 66 (09) :596-615
[4]   The SLC26 gene family of anion transporters and channels [J].
Alper, Seth L. ;
Sharma, Alok K. .
MOLECULAR ASPECTS OF MEDICINE, 2013, 34 (2-3) :494-515
[5]   Crystal structure of the anion exchanger domain of human erythrocyte band 3 [J].
Arakawa, Takatoshi ;
Kobayashi-Yurugi, Takami ;
Alguel, Yilmaz ;
Iwanari, Hiroko ;
Hatae, Hinako ;
Iwata, Momi ;
Abe, Yoshito ;
Hino, Tomoya ;
Ikeda-Suno, Chiyo ;
Kuma, Hiroyuki ;
Kang, Dongchon ;
Murata, Takeshi ;
Hamakubo, Takao ;
Cameron, Alexander D. ;
Kobayashi, Takuya ;
Hamasaki, Naotaka ;
Iwata, So .
SCIENCE, 2015, 350 (6261) :680-684
[6]   CO2 concentrating mechanisms in cyanobacteria:: molecular components, their diversity and evolution [J].
Badger, MR ;
Price, GD .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (383) :609-622
[7]   Structure and mechanism of a group-I cobalt energy coupling factor transporter [J].
Bao, Zhihao ;
Qi, Xiaofeng ;
Hong, Sen ;
Xu, Ke ;
He, Fangyuan ;
Zhang, Minhua ;
Chen, Jiugeng ;
Chao, Daiyin ;
Zhao, Wei ;
Li, Dianfan ;
Wang, Jiawei ;
Zhang, Peng .
CELL RESEARCH, 2017, 27 (05) :675-687
[8]   Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery [J].
Casella, Selene ;
Huang, Fang ;
Mason, David ;
Zhao, Guo-Yan ;
Johnson, Giles N. ;
Mullineaux, Conrad W. ;
Liu, Lu-Ning .
MOLECULAR PLANT, 2017, 10 (11) :1434-1448
[9]   Conserved structure and domain organization among bacterial Slc26 transporters [J].
Compton, Emma L. R. ;
Page, Kimberly ;
Findlay, Heather E. ;
Haertlein, Michael ;
Moulin, Martine ;
Zachariae, Ulrich ;
Norman, David G. ;
Gabel, Frank ;
Javelle, Arnaud .
BIOCHEMICAL JOURNAL, 2014, 463 :297-307
[10]   Low Resolution Structure of a Bacterial SLC26 Transporter Reveals Dimeric Stoichiometry and Mobile Intracellular Domains [J].
Compton, Emma L. R. ;
Karinou, Eleni ;
Naismith, James H. ;
Gabel, Frank ;
Javelle, Arnaud .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (30) :27058-27067