Regression with an infinite number of observations applied to estimating the parameters of the stable distribution using the empirical characteristic function

被引:0
作者
Van Zyl, J. Martin [1 ]
机构
[1] Univ Orange Free State, Dept Math Stat & Actuarial Sci, POB 339, Bloemfontein, South Africa
关键词
Approximation; characteristic function; regression; stable distribution; LAWS;
D O I
10.1080/03610926.2014.901382
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The parameters of stable law parameters can be estimated using a regression based approach involving the empirical characteristic function. One approach is to use a fixed number of points for all parameters of the distribution to estimate the characteristic function. In this work the results are derived where all points in an interval is used to estimate the empirical characteristic function, thus least squares estimators of a linear function of the parameters, using an infinite number of observations. It was found that the procedure performs very good in small samples.
引用
收藏
页码:3323 / 3331
页数:9
相关论文
共 9 条
[1]  
[Anonymous], 1980, TABLES INTEGRALS SER
[2]   Improved estimation of the stable laws [J].
Besbeas, P. ;
Morgan, B. J. T. .
STATISTICS AND COMPUTING, 2008, 18 (02) :219-231
[3]  
Cízek P, 2011, STATISTICAL TOOLS FOR FINANCE AND INSURANCE, SECOND EDITION, P101
[4]   ON SOME FOURIER METHODS FOR INFERENCE [J].
FEUERVERGER, A ;
MCDUNNOUGH, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (374) :379-387
[5]  
Feuerverger A, 1984, CAN J STAT, V12, P303, DOI [10. 2307/3314814, DOI 10.2307/3314814]
[6]  
Gentle J.E., 2004, HDB COMPUTATIONAL ST
[7]  
Kogon SM, 1998, PRACTICAL GUIDE TO HEAVY TAILS, P311
[8]   REGRESSION-TYPE ESTIMATION OF THE PARAMETERS OF STABLE LAWS [J].
KOUTROUVELIS, IA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1980, 75 (372) :918-928
[9]   AN ITERATIVE PROCEDURE FOR THE ESTIMATION OF THE PARAMETERS OF STABLE LAWS [J].
KOUTROUVELIS, IA .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1981, 10 (01) :17-28