Multiple solutions of nonlinear equations involving the square root of the Laplacian

被引:4
作者
Bisci, Giovanni Molica [1 ]
Repovs, Dusan [2 ,3 ]
Vilasi, Luca [4 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, Italy
[2] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Univ Messina, Dept Math & Comp Sci, Phys Sci & Earth Sci, Messina, Italy
关键词
Fractional Laplacian; variational methods; multiple solutions; Primary: 49J35; 35A15; 35S15; Secondary: 47G20; 45G05;
D O I
10.1080/00036811.2016.1221069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the existence of multiple solutions of parametric fractional equations involving the square root of the Laplacian A(1/2) in a smooth bounded domain Omega subset of R-n (n >= 2) and with Dirichlet zero-boundary conditions, i.e. {A(1/2)u = lambda f (u) in Omega u = 0 on partial derivative Omega. The existence of at least three L-infinity-bounded weak solutions is established for certain values of the parameter. requiring that the nonlinear term f is continuous and with a suitable growth. Our approach is based on variational arguments and a variant of Caffarelli-Silvestre's extension method.
引用
收藏
页码:1483 / 1496
页数:14
相关论文
共 18 条
[1]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[2]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[3]  
Bisci G. Molica, ISRAEL J MA IN PRESS
[4]   On the structure of the critical set of non-differentiable functions with a weak compactness condition [J].
Bonanno, Gabriele ;
Marano, Salvatore A. .
APPLICABLE ANALYSIS, 2010, 89 (01) :1-10
[5]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[6]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   The generalized logistic equation with indefinite weight driven by the square root of the Laplacian [J].
Marinelli, Alessio ;
Mugnai, Dimitri .
NONLINEARITY, 2014, 27 (09) :2361-2376