Comparative study of multivariative analysis methods of blood Raman spectra classification

被引:14
作者
Bratchenko, Lyudmila A. [1 ]
Bratchenko, Ivan A. [1 ]
Lykina, Anastasiya A. [1 ]
Komarova, Marina, V [1 ]
Artemyev, Dmitry N. [1 ]
Myakinin, Oleg O. [1 ]
Moryatov, Alexander A. [2 ]
Davydkin, Igor L. [2 ]
Kozlov, Sergey, V [2 ]
Zakharov, Valery P. [1 ]
机构
[1] Samara Natl Res Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
[2] Samara State Med Univ, Samara, Russia
关键词
cancer localization; human blood; multivariate analysis; Raman spectroscopy; total protein; SPECTROSCOPY; PLASMA; IDENTIFICATION; LIPIDS; SERUM;
D O I
10.1002/jrs.5762
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The pathological state of a human body leads to altered biochemical composition of body fluids. Conventional biochemical analysis of body fluids is notable for its low-informative value in localizing a particular pathology. As an alternative, Raman spectroscopy provides detailed evaluation of blood characteristics at the molecular level. Raman blood spectra are characterized by multicollinearity as well as by the presence of autofluorescence background and noises of different nature. Choice of a proper method for experimental data processing of blood spectra is crucial for obtaining statistically reliable information regarding a pathological process in the body. This study examines different approaches to multidimensional analysis of the various-size Raman spectral dataset of human blood samples by a cost-effective Raman setup in a clinical setting. To discriminate blood samples by the pathology type, statistical processing of experimental data is performed by factor analysis, logistic regression, discriminant analysis, classification tree, projection to latent structures discriminant analysis (PLS-DA), and soft independent modeling of class analogies. Comparative analysis of the discussed multivariate methods demonstrates that the PLS-DA method (sensitivity 0.75, specificity 0.81, and accuracy 0.76) proved to be the most effective for the classification of blood samples by cancer localization. In terms of classification for the presence of hyperproteinemia, the most efficient are the logistic regression method (sensitivity 0.89, specificity 0.99, and accuracy 0.97) and the discriminant analysis method (sensitivity 0.83, specificity 1.0, and accuracy 0.97). In general, the selected multivariate methods could serve as a reliable tool for analyzing spectral characteristics of body fluids.
引用
收藏
页码:279 / 292
页数:14
相关论文
共 44 条
[1]  
[Anonymous], 2016, ADV MAT SCI ENG
[2]   Blood proteins analysis by Raman spectroscopy method [J].
Artemyev, D. N. ;
Bratchenko, A. ;
Khristoforova, Yu. A. ;
Lykina, A. A. ;
Myakinin, O. O. ;
Kuzmina, T. P. ;
Davydkin, I. L. ;
Zakharov, V. P. .
BIOPHOTONICS: PHOTONIC SOLUTIONS FOR BETTER HEALTH CARE V, 2016, 9887
[3]   Raman Spectroscopy of Blood and Blood Components [J].
Atkins, Chad G. ;
Buckley, Kevin ;
Blades, Michael W. ;
Turner, Robin F. B. .
APPLIED SPECTROSCOPY, 2017, 71 (05) :767-793
[4]   PLASMA-LIPIDS AND PROLACTIN IN PATIENTS WITH BREAST-CANCER [J].
BANI, IA ;
WILLIAMS, CM ;
BOULTER, PS ;
DICKERSON, JWT .
BRITISH JOURNAL OF CANCER, 1986, 54 (03) :439-446
[5]   Application of Raman Spectroscopy to Identify Microcalcifications and Underlying Breast Lesions at Stereotactic Core Needle Biopsy [J].
Barman, Ishan ;
Dingari, Narahara Chari ;
Saha, Anushree ;
McGee, Sasha ;
Galindo, Luis H. ;
Liu, Wendy ;
Plecha, Donna ;
Klein, Nina ;
Dasari, Ramachandra Rao ;
Fitzmaurice, Maryann .
CANCER RESEARCH, 2013, 73 (11) :3206-3215
[6]   C-reactive protein as an acute phase protein in cancer patients [J].
Bolayirli, Murat ;
Turna, Hande ;
Orhanoglu, Timur ;
Ozaras, Resat ;
Ilhan, Mahmut ;
Ozguroglu, Mustafa .
MEDICAL ONCOLOGY, 2007, 24 (03) :338-344
[7]   Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study [J].
Bonifacio, Alois ;
Dalla Marta, Silvia ;
Spizzo, Riccardo ;
Cervo, Silvia ;
Steffan, Agostino ;
Colombatti, Alfonso ;
Sergo, Valter .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (9-10) :2355-2365
[8]   Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near- infrared and visible regions [J].
Bratchenko, Ivan A. ;
Artemyev, Dmitry N. ;
Myakinin, Oleg O. ;
Khristoforova, Yulia A. ;
Moryatov, Alexander A. ;
Kozlov, Sergey V. ;
Zakharov, Valery P. .
JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (02)
[9]   Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy [J].
Chuchuen, Oranat ;
Henderson, Marcus H. ;
Sykes, Craig ;
Kim, Min Sung ;
Kashuba, Angela D. M. ;
Katz, David F. .
PLOS ONE, 2013, 8 (12)
[10]   Raman spectroscopy of lipids: a review [J].
Czamara, K. ;
Majzner, K. ;
Pacia, M. Z. ;
Kochan, K. ;
Kaczor, A. ;
Baranska, M. .
JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (01) :4-20