Infinitely many bound states for Choquard equations with local nonlinearities

被引:4
作者
Li, Xinfu [1 ]
Liu, Xiaonan [2 ,3 ]
Ma, Shiwang [2 ,3 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiplicity; Choquard equations; Bound states; GROUND-STATE; EXISTENCE;
D O I
10.1016/j.na.2019.111583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Choquard equation (CH) {-Delta u + u = (I-alpha * vertical bar u vertical bar(p))vertical bar u vertical bar(p-2) u + V(x) vertical bar u vertical bar(q-2) u in R-N, u is an element of H-1(R-N), where N >= 3, alpha is an element of ((N-4)(+), N), p is an element of [2, N+alpha/N-2), q is an element of (2, 2N/N-2) boolean AND(1+ (P -1)(N-2)alpha/N-2, 1+ 2N(N-alpha)+N-2(p-1)/(N-2)alpha) and I-alpha is the Riesz potential. Under some suitable decay assumptions but without any symmetry property on V(x), we prove that the problem has infinitely many solutions, whose energy can be arbitrarily large. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:23
相关论文
共 38 条
  • [1] On a periodic Schrodinger equation with nonlocal superlinear part
    Ackermann, N
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) : 423 - 443
  • [2] Zero mass case for a fractional Berestycki-Lions-type problem
    Ambrosio, Vincenzo
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (03) : 365 - 374
  • [3] [Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
  • [4] Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay
    Belchior, P.
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 : 38 - 53
  • [5] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [6] Infinitely many bound states for some nonlinear scalar field equations
    Cerami, G
    Devillanova, G
    Solimini, S
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (02) : 139 - 168
  • [7] Chang K. C., 1993, Infinite Dimensional Morse Theory and Multiple Solution Problems, DOI DOI 10.1007/978-1-4612-0385-8
  • [8] Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrodinger equation
    Chen, Jianqing
    Guo, Boling
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 83 - 92
  • [9] Multiple solutions to a magnetic nonlinear Choquard equation
    Cingolani, Silvia
    Clapp, Monica
    Secchi, Simone
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02): : 233 - 248
  • [10] Positive and sign changing solutions to a nonlinear Choquard equation
    Clapp, Monica
    Salazar, Dora
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) : 1 - 15