Well-posedness of second order degenerate differential equations in Holder continuous function spaces

被引:8
作者
Bu, Shangquan [1 ]
Cai, Gang [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chongqing Normal Univ, Coll Math Sci, Chongqing 401331, Peoples R China
关键词
C-alpha-well-posedness; Degenerate differential equations; C-alpha-Fourier multiplier; Holder continuous function spaces;
D O I
10.1016/j.exmath.2015.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using operator-valued C-alpha-Fourier multiplier results on vector-valued Holder continuous function spaces, we completely characterize the C-alpha-well-posedness of the second order degenerate differential equations (Mu)''(t) = Au(t) + f(t) (t is an element of R) and (Mu')'(t) = Au(t) + f(t) (t is an element of R), where A, M are closed operators on a Banach space X and 0 < alpha < 1. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 9 条
[1]   Fourier multipliers for Holder continuous functions and maximal regularity [J].
Arendt, W ;
Batty, C ;
Bu, SQ .
STUDIA MATHEMATICA, 2004, 160 (01) :23-51
[2]  
Arendt W., 2001, VECTOR VALUED LAPLAC
[3]  
Barbu V., 1997, REND I MAT U TRIES S, VXXVIII, pS29
[4]   Well-posedness of degenerate differential equations in Holder continuous function spaces [J].
Bu, Shangquan .
FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) :239-248
[5]   Well-posedness of second order degenerate differential equations in vector-valued function spaces [J].
Bu, Shangquan .
STUDIA MATHEMATICA, 2013, 214 (01) :1-16
[6]  
Favini A., 1999, DEGENERATE DIFFERENT, V215
[7]   MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES [J].
Lizama, Carlos ;
Ponce, Rodrigo .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (03) :853-871
[8]   Periodic solutions of degenerate differential equations in vector-valued function spaces [J].
Lizama, Carlos ;
Ponce, Rodrigo .
STUDIA MATHEMATICA, 2011, 202 (01) :49-63
[9]   Holder continuous solutions for Sobolev type differential equations [J].
Ponce, Rodrigo .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (01) :70-78