NARMAX representation and identification of ankle dynamics

被引:31
作者
Kukreja, SL
Galiana, HL
Kearney, RE [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
[2] McGill Univ, Dept Biomed Engn, Montreal, PQ H3A 2T5, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
ankle dynamics; mathematical modeling; NARMAX; nonlinear systems; system identification;
D O I
10.1109/TBME.2002.803507
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Representation and identification of a parallel pathway description of ankle dynamics as a model of the non-linear autoregressive, moving average exogenous (NARMAX) class is considered. A nonlinear difference equation describing this ankle model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to ankle dynamics and its properties investigated via continuous-time simulations of experimental conditions. Simulation results show that 1) the outputs of the NARMAX model match closely those generated using continuous-time methods and 2) NARMAX identification methods applied to ankle dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental human ankle data models with high cross-validation variance accounted for.
引用
收藏
页码:70 / 81
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 1977, DYNAMIC SYSTEM IDENT
[2]  
Astrom K.J., 2011, Computer-Controlled Systems: Theory and Design, VThird
[3]   STRUCTURE DETECTION AND MODEL VALIDITY TESTS IN THE IDENTIFICATION OF NON-LINEAR SYSTEMS [J].
BILLINGS, SA ;
VOON, WSF .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1983, 130 (04) :193-199
[4]   EXTENDED MODEL SET, GLOBAL DATA AND THRESHOLD-MODEL IDENTIFICATION OF SEVERELY NON-LINEAR SYSTEMS [J].
BILLINGS, SA ;
CHEN, S .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1897-1923
[5]  
BILLINGS SA, 1986, INT J CONTROL, V44, P235, DOI 10.1080/00207178608933593
[6]  
BILLINGS SA, 1984, INT J SYST SCI, V15, P601, DOI 10.1080/00207728408547198
[7]   REPRESENTATIONS OF NON-LINEAR SYSTEMS - THE NARMAX MODEL [J].
CHEN, S ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (03) :1013-1032
[8]  
Draper N., 1981, Applied Regression Analysis, VSecond
[9]  
GOLUB G., 1993, MATRIX COMPUTATION
[10]   UNIFIED TREATMENT RECURSIVE DIGITAL FILTERING [J].
HAYKIN, SS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (01) :113-&