Experimental study of the influence of water and temperature on the mechanical behavior of mudstone and sandstone

被引:117
作者
Lu, Yinlong [1 ]
Wang, Lianguo [1 ]
Sun, Xiaokang [1 ]
Wang, Jun [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Coal measure rocks; Water saturation; Temperature; Uniaxial compression; CT scanning; Microstructure; SUBCRITICAL CRACK-GROWTH; COMPRESSIVE STRENGTH; ROCK MECHANICS; DEFORMATION; COAL; MICROCRACKING; REDUCTION; PRESSURE; MOISTURE; POROSITY;
D O I
10.1007/s10064-016-0851-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the influence of water and temperature on the mechanical behaviors of coal measure rocks is important for deep coal resource exploitation. Using an electro-hydraulic servo-controlled testing system (MTS816) with a self-designed thermostatic water tank, a series of water absorption experiments and uniaxial compression experiments were performed on mudstone and sandstone samples that were immersed in water under different temperature conditions (from 25 to 95 A degrees C). The water absorption characteristics at different temperatures and the effect of water and temperature on the mechanical strength, deformation and failure mode of the samples under uniaxial compression were systematically analyzed. In addition, computerized tomography (CT) scanning was used to examine the microstructural changes in the mudstone and sandstone before and after water saturation at different water temperatures. The results from the water absorption tests show that the water content of the mudstone and sandstone samples kept increasing with immersion time until a saturated state was reached, with the trend generally following an exponential law. The higher water temperature allowed additional water absorption in the saturated mudstone, but less water absorption in the saturated sandstone. The mechanical tests suggest that the presence of water can significantly reduce the mechanical properties of the coal measure rocks. Decreases in the uniaxial compressive strength (UCS) of 76.0 and 38.9 % and the elastic modulus of 68.1 and 48.5 % were observed in the mudstone and sandstone, respectively, because of water saturation at room temperature. Moreover, the water-weakening effect was sensitive to water temperature, and as the water temperature increased from 25 to 95 A degrees C, the UCS and elastic modulus decreased linearly in the saturated mudstone by 53.8 and 70.4 %, respectively, and increased linearly in the saturated sandstone by 21.3 and 20.2 %, respectively. The increasing water temperature also promoted a transition in the saturated mudstone from brittle to ductile behavior, but it had a negligible effect on the failure mode of the saturated sandstone. The CT scanning tests demonstrated that new fractures are produced inside the mudstone after water saturation and that the increasing temperature can exacerbate such water-induced damage. However, no obvious fractures were observed in the CT images of the sandstone at room temperature or at high water temperatures, and the water-induced damage in the sandstone appeared as the micro-fractures at a scale below the CT resolution.
引用
收藏
页码:645 / 660
页数:16
相关论文
共 53 条
[1]   Effects of confining pressure and temperature on mixed-mode (I-II) fracture toughness of a limestone rode [J].
Al-Shayea, NA ;
Khan, K ;
Abduljauwad, SN .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2000, 37 (04) :629-643
[2]   SUBCRITICAL CRACK-GROWTH IN GEOLOGICAL-MATERIALS [J].
ATKINSON, BK .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4077-4114
[3]   Failure mode and weakening effect of water on sandstone [J].
Baud, P ;
Zhu, WL ;
Wong, TF .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2000, 105 (B7) :16371-16389
[4]  
Benzagouta MS, 2009, SPE SAUD AR SECT TEC
[5]   THE BRITTLE-TO-DUCTILE TRANSITION IN SILICON [J].
BREDE, M .
ACTA METALLURGICA ET MATERIALIA, 1993, 41 (01) :211-228
[6]   ON THE TEMPERATURE-DEPENDENCE OF MINERAL DISSOLUTION RATES [J].
CASEY, WH ;
SPOSITO, G .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (10) :3825-3830
[7]   Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks [J].
Ciantia, Matteo Oryem ;
Castellanza, Riccardo ;
Crosta, Giovanni B. ;
Hueckel, Tomasz .
ENGINEERING GEOLOGY, 2015, 184 :1-18
[8]   High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications [J].
Cnudde, V. ;
Boone, M. N. .
EARTH-SCIENCE REVIEWS, 2013, 123 :1-17
[9]   Unsaturated rock mechanics applied to a low-porosity shale [J].
da Silva, Mikael Ramos ;
Schroeder, Christian ;
Verbrugge, Jean-Claude .
ENGINEERING GEOLOGY, 2008, 97 (1-2) :42-52
[10]   Water-induced variations in mechanical properties of clay-bearing rocks [J].
Erguler, Z. A. ;
Ulusay, R. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2009, 46 (02) :355-370