Recyclable 3D printing of vitrimer epoxy

被引:394
作者
Shi, Qian [1 ,2 ]
Yu, Kai [2 ,3 ]
Kuang, Xiao [2 ]
Mu, Xiaoming [2 ]
Dunn, Conner K. [2 ]
Dunn, Martin L. [4 ]
Wang, Tiejun [1 ]
Qi, H. Jerry [2 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp Engn, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Univ Colorado, Dept Mech Engn, Denver, CO 80202 USA
[4] Singapore Univ Technol & Design, SUTD Digital Mfg & Design DManD Ctr, Singapore 487372, Singapore
[5] Georgia Inst Technol, Renewable Bioprod Inst, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
BOND-EXCHANGE REACTIONS; POLYMERS; THERMOSET; REACTIONWARE; COMPOSITES; DYNAMERS; COMPLEX;
D O I
10.1039/c7mh00043j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D printing of polymeric materials for various applications has been quickly developed in recent years. In contrast to thermoplastics, 3D printed thermosets, although desirable, are inherently non-recyclable due to their permanently crosslinked networks. As 3D printing is becoming more popular, it is desirable to develop recycling approaches for 3D printed parts in view of increasing polymer wastes. Here, we present a new thermosetting vitrimer epoxy ink and a 3D printing method that can 3D print epoxy into parts with complicated 3D geometries, which later can be recycled into a new ink for the next round of 3D printing. In the first printing cycle, a high-viscous ink is first slightly cured and is then printed at an elevated temperature into complicated 3D structures, followed by an oven cure using a two-step approach. To be recycled, the printed epoxy parts are fully dissolved in an ethylene glycol solvent in a sealed container at a high temperature. The dissolved polymer solution is reused for the next printing cycle using similar printing conditions. Our experiments demonstrate that the ink can be printed four times and still retains very good printability. In addition, the vitrimer epoxy can be used for pressure-free repairs for the 3D printed parts.
引用
收藏
页码:598 / 607
页数:10
相关论文
共 47 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[3]   The upcoming 3D-printing revolution in microfluidics [J].
Bhattacharjee, Nirveek ;
Urrios, Arturo ;
Kanga, Shawn ;
Folch, Albert .
LAB ON A CHIP, 2016, 16 (10) :1720-1742
[4]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[5]   Microfl uidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink [J].
Colosi, Cristina ;
Shin, Su Ryon ;
Manoharan, Vijayan ;
Massa, Solange ;
Costantini, Marco ;
Barbetta, Andrea ;
Dokmeci, Mehmet Remzi ;
Dentini, Mariella ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2016, 28 (04) :677-684
[6]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+
[7]   Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing [J].
Dimas, Leon S. ;
Bratzel, Graham H. ;
Eylon, Ido ;
Buehler, Markus J. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (36) :4629-4638
[8]   3D PRINTING Additive manufacturing of polymer-derived ceramics [J].
Eckel, Zak C. ;
Zhou, Chaoyin ;
Martin, John H. ;
Jacobsen, Alan J. ;
Carter, William B. ;
Schaedler, Tobias A. .
SCIENCE, 2016, 351 (6268) :58-62
[9]  
Fantino E, 2016, ADV MATER, V28, P3712, DOI [10.1002/adma.201505109, 10.1002/adma.201670132]
[10]   Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers [J].
Fortman, David J. ;
Brutman, Jacob P. ;
Cramer, Christopher J. ;
Hillmyer, Marc A. ;
Dichtel, William R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14019-14022