Patterning of functional materials by pulsed laser deposition through nanostencils

被引:1
作者
Cojocaru, Cristian-Victor [1 ]
Harnagea, Catalin [1 ]
Pignolet, Alain
Rosei, Federico [1 ]
机构
[1] Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ, Canada
来源
2006 IEEE CONFERENCE ON EMERGING TECHNOLOGIES - NANOELECTRONICS | 2006年
基金
加拿大自然科学与工程研究理事会;
关键词
unconventional patterning approaches; functional materials; pulsed laser deposition; nanostencils; atomic force microscopy;
D O I
10.1109/NANOEL.2006.1609730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present how various features drawn in a miniature shadow-mask (nanostencil) can be efficiently transferred to a surface in the form of 3D nanostructures of metals (Pt, Cr), semiconductors (lie) or complex oxides (e.g. BaTiO3) by room temperature pulsed laser deposition (PLD) and stenciling. Using the proposed method, there is no aggressive interaction with the substrate, but selective deposition of the material by simply interposing a sieve with apertures down to 100 nm between the deposition source and the substrate. Nanostenciling allows organizing the structures in given architectures, with high accuracy, while reducing drastically the number of processes present in resist-based lithography. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. The patterning process is simple and rapid since it is not implying additional processing steps to the deposition process; it is also parallel, resist-less and without interfering with the structures natural growth dynamics. Nanostenciling can be performed in high or ultra high vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces.
引用
收藏
页码:283 / +
页数:3
相关论文
共 36 条
  • [1] Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy
    Abplanalp, M
    Eng, LM
    Gunter, P
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S231 - S234
  • [2] Resistless patterning of sub-micron structures by evaporation through nanostencils
    Brugger, J
    Berenschot, JW
    Kuiper, S
    Nijdam, W
    Otter, B
    Elwenspoek, M
    [J]. MICROELECTRONIC ENGINEERING, 2000, 53 (1-4) : 403 - 405
  • [3] SOI wafer flow process for stencil mask fabrication
    Butschke, J
    Ehrmann, A
    Höfflinger, B
    Irmscher, M
    Käsmaier, R
    Letzkus, F
    Löschner, H
    Mathuni, J
    Reuter, C
    Schomburg, C
    Springer, R
    [J]. MICROELECTRONIC ENGINEERING, 1999, 46 (1-4) : 473 - 476
  • [4] Nanometer-scale scanning sensors fabricated using stencil lithography
    Champagne, AR
    Couture, AJ
    Kuemmeth, F
    Ralph, DC
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (07) : 1111 - 1113
  • [5] IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS
    CHOU, SY
    KRAUSS, PR
    RENSTROM, PJ
    [J]. APPLIED PHYSICS LETTERS, 1995, 67 (21) : 3114 - 3116
  • [6] Chrisey D. B., 1994, PULSED LASER DEPOSIT
  • [7] COJOCARU CS, UNPUB
  • [8] Complex oxide nanostructures by pulsed laser deposition through nanostencils
    Cojocaru, CV
    Harnagea, C
    Rosei, F
    Pignolet, A
    van den Boogaart, MAF
    Brugger, J
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (18) : 1 - 3
  • [9] Semiconductor and insulator nanostructures: challenges and opportunities
    Cojocaru, CV
    Ratto, F
    Harnagea, C
    Pignolet, A
    Rosei, F
    [J]. MICROELECTRONIC ENGINEERING, 2005, 80 : 448 - 456
  • [10] Nanofabrication using a stencil mask
    Deshmukh, MM
    Ralph, DC
    Thomas, M
    Silcox, J
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (11) : 1631 - 1633