ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling

被引:32
作者
Yu, Jiyang [1 ]
Silva, Jose [2 ]
Califano, Andrea [1 ]
机构
[1] Columbia Univ, Dept Biomed Informat, Dept Syst Biol, Herbert Irving Comprehens Canc Ctr,Ctr Computat B, New York, NY 10032 USA
[2] Icahn Sch Med Mt Sinai, Dept Pathol, New York, NY 10029 USA
关键词
SCALE RNAI SCREENS; ESSENTIAL GENES; OVARIAN-CANCER; HUMAN-CELLS; THERAPEUTIC TARGET; SHRNA LIBRARIES; IDENTIFICATION; GENERATION; STANDARDS; BREAST;
D O I
10.1093/bioinformatics/btv556
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library. Method: We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM). Results: Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets.
引用
收藏
页码:260 / 267
页数:8
相关论文
共 44 条
[1]  
[Anonymous], 2021, Bayesian data analysis
[2]  
[Anonymous], 1948, AM STAT
[3]   STK33 Kinase Activity Is Nonessential in KRAS-Dependent Cancer Cells [J].
Babij, Carol ;
Zhang, Yihong ;
Kurzeja, Robert J. ;
Munzli, Anke ;
Shehabeldin, Amro ;
Fernando, Manory ;
Quon, Kim ;
Kassner, Paul D. ;
Ruefli-Brasse, Astrid A. ;
Watson, Vivienne J. ;
Fajardo, Flordeliza ;
Jackson, Angela ;
Zondlo, James ;
Sun, Yu ;
Ellison, Aaron R. ;
Plewa, Cherylene A. ;
San Miguel, Tisha ;
Robinson, John ;
McCarter, John ;
Schwandner, Ralf ;
Judd, Ted ;
Carnahan, Josette ;
Dussault, Isabelle .
CANCER RESEARCH, 2011, 71 (17) :5818-5826
[4]   Raise standards for preclinical cancer research [J].
Begley, C. Glenn ;
Ellis, Lee M. .
NATURE, 2012, 483 (7391) :531-533
[5]   Identification of Human Housekeeping Genes and Tissue-Selective Genes by Microarray Meta-Analysis [J].
Chang, Cheng-Wei ;
Cheng, Wei-Chung ;
Chen, Chaang-Ray ;
Shu, Wun-Yi ;
Tsai, Min-Lung ;
Huang, Ching-Lung ;
Hsu, Ian C. .
PLOS ONE, 2011, 6 (07)
[6]   Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer [J].
Cheung, Hiu Wing ;
Cowley, Glenn S. ;
Weir, Barbara A. ;
Boehm, Jesse S. ;
Rusin, Scott ;
Scott, Justine A. ;
East, Alexandra ;
Ali, Levi D. ;
Lizotte, Patrick H. ;
Wong, Terence C. ;
Jiang, Guozhi ;
Hsiao, Jessica ;
Mermel, Craig H. ;
Getz, Gad ;
Barretina, Jordi ;
Gopal, Shuba ;
Tamayo, Pablo ;
Gould, Joshua ;
Tsherniak, Aviad ;
Stransky, Nicolas ;
Luo, Biao ;
Ren, Yin ;
Drapkin, Ronny ;
Bhatia, Sangeeta N. ;
Mesirov, Jill P. ;
Garraway, Levi A. ;
Meyerson, Matthew ;
Lander, Eric S. ;
Root, David E. ;
Hahn, William C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12372-12377
[7]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[8]   Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies [J].
Cowley, Glenn S. ;
Weir, Barbara A. ;
Vazquez, Francisca ;
Tamayo, Pablo ;
Scott, Justine A. ;
Rusin, Scott ;
East-Seletsky, Alexandra ;
Ali, Levi D. ;
Gerath, William F. J. ;
Pantel, Sarah E. ;
Lizotte, Patrick H. ;
Jiang, Guozhi ;
Hsiao, Jessica ;
Tsherniak, Aviad ;
Dwinell, Elizabeth ;
Aoyama, Simon ;
Okamoto, Michael ;
Harrington, William ;
Gelfand, Ellen ;
Green, Thomas M. ;
Tomko, Mark J. ;
Gopal, Shuba ;
Wong, Terence C. ;
Li, Hubo ;
Howell, Sara ;
Stransky, Nicolas ;
Liefeld, Ted ;
Pang, Dongkeun ;
Bistline, Jonathan ;
Meyers, Barbara Hill ;
Armstrong, Scott A. ;
Anderson, Ken C. ;
Stegmaier, Kimberly ;
Reich, Michael ;
Pellman, David ;
Boehm, Jesse S. ;
Mesirov, Jill P. ;
Golub, Todd R. ;
Root, David E. ;
Hahn, William C. .
SCIENTIFIC DATA, 2014, 1
[9]   shRNA Kinome Screen Identifies TBK1 as a Therapeutic Target for HER2+ Breast Cancer [J].
Deng, Tao ;
Liu, Jeff C. ;
Chung, Philip E. D. ;
Uehling, David ;
Aman, Ahmed ;
Joseph, Babu ;
Ketela, Troy ;
Jiang, Zhe ;
Schachter, Nathan F. ;
Rottapel, Robert ;
Egan, Sean E. ;
Al-awar, Rima ;
Moffat, Jason ;
Zacksenhaus, Eldad .
CANCER RESEARCH, 2014, 74 (07) :2119-2130
[10]   HiTSelect: a comprehensive tool for high-complexity-pooled screen analysis [J].
Diaz, Aaron A. ;
Qin, Han ;
Ramalho-Santos, Miguel ;
Song, Jun S. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (03) :e16