The Determinant Inner Product and the Heisenberg Product of Sym(2)

被引:2
|
作者
Crasmareanu, Mircea [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2021年 / 14卷 / 01期
关键词
Symmetric matrix; determinant; Hopf bundle; Hopf invariant;
D O I
10.36890/IEJG.754557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to introduce and study the nondegenerate inner product < .,. >(det) induced by the determinant map on the space Sym(2) of symmetric 2 x 2 real matrices. This symmetric bilinear form of index 2 defines a rational symmetric function on the pairs of rays in the plane and an associated function on the 2-torus can be expressed with the usual Hopf bundle projection S-3 -> S-2 (1/2). Also, the product < .,. >(det) is treated with complex numbers by using the Hopf invariant map of Sym(2) and this complex approach yields a Heisenberg product on Sym(2). Moreover, the quadratic equation of critical points for a rational Morse function of height type generates a cosymplectic structure on Sym(2) with the unitary matrix as associated Reeb vector and with the Reeb 1-form being half of the trace map.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [31] Some inequalities in 2-inner product spaces
    Cho, YJ
    Dragomir, SS
    White, A
    Kim, SS
    FIXED POINT THEORY AND APPLICATIONS-BOOK, 2000, : 145 - 155
  • [32] ON 2-INNER PRODUCT SPACES AND REPRODUCING PROPERTY
    Sababe, Saeed Hashemi
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 973 - 984
  • [33] Atomic Systems in 2-inner Product Spaces
    Dastourian, Bahram
    Janfada, Mohammad
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (01): : 103 - 110
  • [34] Inner-product and out-product of Vague set
    Tang, Zhi-gang
    Liang, Jia-rong
    Li, Shi-yong
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1484 - 1487
  • [35] ON ISOMETRIES OF INNER PRODUCT SPACES
    MILNOR, J
    INVENTIONES MATHEMATICAE, 1969, 8 (02) : 83 - &
  • [36] CHARACTERIZATION OF INNER PRODUCT SPACES
    RAKESTRAW, RM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (01) : 267 - 272
  • [37] Consolidating Inner Product Masking
    Balasch, Josep
    Faust, Sebastian
    Gierlichs, Benedikt
    Paglialonga, Clara
    Standaert, Francois-Xavier
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2017, PT I, 2017, 10624 : 724 - 754
  • [38] On vectorial inner product spaces
    De Deus Marques J.
    Czechoslovak Mathematical Journal, 2000, 50 (3) : 539 - 550
  • [39] INNER PRODUCT PROCESSOR.
    Frietman, E.E.E.
    Bruggeman, F.
    1600, (21): : 1 - 5
  • [40] CHARACTERIZATIONS OF INNER PRODUCT SPACES
    LAUGWITZ, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) : 184 - 188