The Determinant Inner Product and the Heisenberg Product of Sym(2)

被引:2
|
作者
Crasmareanu, Mircea [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2021年 / 14卷 / 01期
关键词
Symmetric matrix; determinant; Hopf bundle; Hopf invariant;
D O I
10.36890/IEJG.754557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to introduce and study the nondegenerate inner product < .,. >(det) induced by the determinant map on the space Sym(2) of symmetric 2 x 2 real matrices. This symmetric bilinear form of index 2 defines a rational symmetric function on the pairs of rays in the plane and an associated function on the 2-torus can be expressed with the usual Hopf bundle projection S-3 -> S-2 (1/2). Also, the product < .,. >(det) is treated with complex numbers by using the Hopf invariant map of Sym(2) and this complex approach yields a Heisenberg product on Sym(2). Moreover, the quadratic equation of critical points for a rational Morse function of height type generates a cosymplectic structure on Sym(2) with the unitary matrix as associated Reeb vector and with the Reeb 1-form being half of the trace map.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [1] Inequalities involving gram's determinant in 2-inner product spaces
    Kim, SS
    Dragomir, SS
    INEQUALITY THEORY AND APPLICATIONS, VOL 1, 2001, : 183 - 192
  • [2] ON INNER PRODUCT OF 2 VECTORS
    GOLAB, S
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (02): : 303 - &
  • [3] 2-INNER PRODUCT SPACES
    DIMINNIE, C
    WHITE, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A10 - A10
  • [4] The *-product quantization of the Heisenberg group
    Bonechi, F
    Sorace, E
    Tarlini, M
    Giachetti, R
    QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 : 581 - 593
  • [5] PETERSSON INNER PRODUCT AND RESIDUE OF AN EULER PRODUCT
    MORENO, CJ
    PACIFIC JOURNAL OF MATHEMATICS, 1978, 78 (01) : 149 - 155
  • [6] DIRECTIONAL HEISENBERG UNCERTAINTY PRODUCT
    Krivoshein, A.
    Lebedeva, E.
    Neiman, E.
    Prestin, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 377 - 399
  • [7] An inner product lemma
    Gustafson, K
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (07) : 649 - 659
  • [8] INNER PRODUCT COMPUTERS
    SWARTZLANDER, EE
    GILBERT, BK
    REED, IS
    IEEE TRANSACTIONS ON COMPUTERS, 1978, 27 (01) : 21 - 31
  • [9] THE INNER PRODUCT PROCESSOR
    FRIETMAN, EEE
    BRUGGEMAN, F
    MICROPROCESSING AND MICROPROGRAMMING, 1987, 21 (1-5): : 313 - 318
  • [10] INNER PRODUCT SPACES
    GUDDER, S
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (01): : 29 - 36