Planar graphs without 4-cycles and close triangles are (2,0,0)-colorable

被引:1
作者
Hoskins, Heather [1 ]
Liu, Runrun [2 ]
Vandenbussche, Jennifer [3 ]
Yu, Gexin [1 ,2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Cent China Normal Univ, Dept Math & Stat, Wuhan, Hubei, Peoples R China
[3] Kennesaw State Univ, Dept Math, Marietta, GA 30060 USA
关键词
Planar graphs; 3-Colorable; Discharging; STEINBERGS CONJECTURE; LENGTH; 4; CYCLES; RELAXATION; MAP;
D O I
10.1007/s10878-018-0298-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a set of nonnegative integers , a -coloring of a graph G is a partition of V(G) into such that for every i, has maximum degree at most . We prove that all planar graphs without 4-cycles and no less than two edges between triangles are (2, 0, 0)-colorable.
引用
收藏
页码:346 / 364
页数:19
相关论文
共 20 条
  • [1] EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING
    APPEL, K
    HAKEN, W
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 429 - 490
  • [2] EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY
    APPEL, K
    HAKEN, W
    KOCH, J
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 491 - 567
  • [3] Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Ochem, P.
    Raspaud, A.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 65 (02) : 83 - 93
  • [4] Planar graphs without cycles of length from 4 to 7 are 3-colorable
    Borodin, OV
    Glebov, AN
    Raspaud, A
    Salavatipour, MR
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) : 303 - 311
  • [5] Planar graphs without cycles of length 4 or 5 are (2,0,0)-colorable
    Chen, Ming
    Wang, Yingqian
    Liu, Peipei
    Xu, Jinghan
    [J]. DISCRETE MATHEMATICS, 2016, 339 (02) : 886 - 905
  • [6] Steinberg's Conjecture is false
    Cohen-Addad, Vincent
    Hebdige, Michael
    Kral, Daniel
    Li, Zhentao
    Salgado, Esteban
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 452 - 456
  • [7] DEFECTIVE COLORINGS OF GRAPHS IN SURFACES - PARTITIONS INTO SUBGRAPHS OF BOUNDED VALENCY
    COWEN, LJ
    COWEN, RH
    WOODALL, DR
    [J]. JOURNAL OF GRAPH THEORY, 1986, 10 (02) : 187 - 195
  • [8] Dvorak Z., 2009, ARXIV09110885
  • [9] Grotzch H, 1958, WISS Z MARTIN LUTHER, P109
  • [10] Havel I., 1969, J COMB THEORY B, V7, P184