Bilevel Parameter Learning for Nonlocal Image Denoising Models

被引:22
作者
D'Elia, M. [1 ]
De los Reyes, J. C. [2 ]
Miniguano-Trujillo, A. [2 ]
机构
[1] Sandia Natl Labs, Computat Sci & Anal, Livermore, CA USA
[2] Escuela Politec Nacl, Res Ctr Math Modelling MODEMAT, Quito, Ecuador
关键词
DIFFUSION-PROBLEMS; REGULARIZATION; APPROXIMATION; OPTIMIZATION;
D O I
10.1007/s10851-021-01026-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a bilevel optimization approach for the estimation of parameters in nonlocal image denoising models. The parameters we consider are both the fidelity weight and weights within the kernel of the nonlocal operator. In both cases, we investigate the differentiability of the solution operator in function spaces and derive a first-order optimality system that characterizes local minima. For the numerical solution of the problems, we use a second-order trust-region algorithm in combination with a finite element discretization of the nonlocal denoising models and introduce a computational strategy for the solution of the resulting dense linear systems. Several experiments illustrate the applicability and effectiveness of our approach.
引用
收藏
页码:753 / 775
页数:23
相关论文
共 43 条
[1]   Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation [J].
Alali, Bacim ;
Lipton, Robert .
JOURNAL OF ELASTICITY, 2012, 106 (01) :71-103
[2]   Spectral Approximation of Fractional PDEs in Image Processing and Phase Field Modeling [J].
Antil, Harbir ;
Bartels, Soeren .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) :661-678
[3]   Peridynamics for multiscale materials modeling [J].
Askari, E. ;
Bobaru, F. ;
Lehoucq, R. B. ;
Parks, M. L. ;
Silling, S. A. ;
Weckner, O. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[4]   An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions [J].
Bates, PW ;
Chmaj, A .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) :1119-1139
[5]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[6]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[7]   Self-Similarity-based Image Denoising [J].
Buades, Antoni ;
Coll, Bartomeu ;
Morel, Jean-Michel .
COMMUNICATIONS OF THE ACM, 2011, 54 (05) :109-117
[8]   The exit-time problem for a Markov jump process [J].
Burch, N. ;
D'Elia, M. ;
Lehoucq, R. B. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (14) :3257-3271
[9]  
Capodaglio G., 2019, ARXIV200103696
[10]   IMAGE DENOISING: LEARNING THE NOISE MODEL VIA NONSMOOTH PDE-CONSTRAINED OPTIMIZATION [J].
Carlos De los Reyes, Juan ;
Schoenlieb, Carola-Bibiane .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (04) :1183-1214