Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions

被引:240
作者
Wang, Siheng [1 ,2 ,3 ]
Yu, Le [2 ]
Wang, Shanshan [3 ]
Zhang, Lei [1 ]
Chen, Lu [2 ]
Xu, Xu [3 ]
Song, Zhanqian [1 ]
Liu, He [1 ]
Chen, Chaoji [2 ]
机构
[1] Chinese Acad Forestry, Inst Chem Ind Forestry Prod, Jiangsu Key Lab Biomass Energy & Mat, Nanjing 210042, Peoples R China
[2] Wuhan Univ, Sch Resource & Environm Sci, Hubei Biomass Resource Chem & Environm Biotechnol, Wuhan 430079, Peoples R China
[3] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
DISSOLUTION; STRENGTH;
D O I
10.1038/s41467-022-30224-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellulose based ion conductive hydrogels are emerging materials for application in flexible electronics but achieving simultaneously high conductivity and good mechanical properties remains challenging. Here, the authors propose a supramolecular engineering strategy to strengthen cellulosic hydrogel and to improve simultaneously its ionic conductivity and freezing tolerance. Ionic conductive hydrogels prepared from naturally abundant cellulose are ideal candidates for constructing flexible electronics from the perspective of commercialization and environmental sustainability. However, cellulosic hydrogels featuring both high mechanical strength and ionic conductivity remain extremely challenging to achieve because the ionic charge carriers tend to destroy the hydrogen-bonding network among cellulose. Here we propose a supramolecular engineering strategy to boost the mechanical performance and ionic conductivity of cellulosic hydrogels by incorporating bentonite (BT) via the strong cellulose-BT coordination interaction and the ion regulation capability of the nanoconfined cellulose-BT intercalated nanostructure. A strong (compressive strength up to 3.2 MPa), tough (fracture energy up to 0.45 MJ m(-3)), yet highly ionic conductive and freezing tolerant (high ionic conductivities of 89.9 and 25.8 mS cm(-1) at 25 and -20 degrees C, respectively) all-natural cellulose-BT hydrogel is successfully realized. These findings open up new perspectives for the design of cellulosic hydrogels and beyond.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [2] Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions
    Cai, J
    Zhang, L
    [J]. MACROMOLECULAR BIOSCIENCE, 2005, 5 (06) : 539 - 548
  • [3] A strong, flame-retardant, and thermally insulating wood laminate
    Chen, Gegu
    Chen, Chaoji
    Pei, Yong
    He, Shuaiming
    Liu, Yang
    Jiang, Bo
    Jiao, Miaolun
    Gan, Wentao
    Liu, Dapeng
    Yang, Bao
    Hu, Liangbing
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 383
  • [4] Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries
    Chen, Minfeng
    Chen, Jizhang
    Zhou, Weijun
    Han, Xiang
    Yao, Yagang
    Wong, Ching-Ping
    [J]. ADVANCED MATERIALS, 2021, 33 (09)
  • [5] Chen WS, 2018, CHEM SOC REV, V47, P2837, DOI [10.1039/c7cs00790f, 10.1039/C7CS00790F]
  • [6] Superelastic, Hygroscopic, and Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing
    Chen, Yuan
    Yu, Zhengyang
    Ye, Yuhang
    Zhang, Yifan
    Li, Gaiyun
    Jiang, Feng
    [J]. ACS NANO, 2021, 15 (01) : 1869 - 1879
  • [7] Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions
    Ge, Wenjiao
    Cao, Shan
    Yang, Yang
    Rojas, Orlando J.
    Wang, Xiaohui
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 408
  • [8] Biocompatible and biodegradable super-toughness regenerated cellulose via water molecule-assisted molding
    Hu, Lei
    Zhong, Yi
    Wu, Shuangquan
    Wei, Pingdong
    Huang, Junchao
    Xu, Duoduo
    Zhang, Lina
    Ye, Qifa
    Cai, Jie
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [9] Strong tough hydrogels via the synergy of freeze-casting and salting out
    Hua, Mutian
    Wu, Shuwang
    Ma, Yanfei
    Zhao, Yusen
    Chen, Zilin
    Frenkel, Imri
    Strzalka, Joseph
    Zhou, Hua
    Zhu, Xinyuan
    He, Ximin
    [J]. NATURE, 2021, 590 (7847) : 594 - 599
  • [10] Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels
    Kong, Weiqing
    Wang, Chengwei
    Jia, Chao
    Kuang, Yudi
    Pastel, Glenn
    Chen, Chaoji
    Chen, Gegu
    He, Shuaiming
    Huang, Hao
    Zhang, Jianhua
    Wang, Sha
    Hu, Liangbing
    [J]. ADVANCED MATERIALS, 2018, 30 (39)