A Transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans

被引:22
作者
Chen, Quan [1 ]
Xu, Xiang [2 ]
Hu, Shiliang [2 ]
Li, Xiao [3 ]
Zou, Qing [3 ]
Li, Yunpeng [2 ]
机构
[1] Univ Virginia, Dept Radiat Oncol, Charlottesville, VA 22908 USA
[2] SkyData InfoTech, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Dept Urol, Affiliated Canc Hosp, Nanjing, Jiangsu, Peoples R China
来源
MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS | 2017年 / 10134卷
关键词
prostate cancer; deep learning neural network (DNN); Convolution neural Network (CNN); multiparameter MRI (mpMRI); transfer learning; computer aided diagnosis (CADx); prostateX challenge; VGG; COMPUTER-AIDED DETECTION;
D O I
10.1117/12.2279021
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning has shown a great potential in computer aided diagnosis. However, in many applications, large dataset is not available. This makes the training of a sophisticated deep learning neural network (DNN) difficult. In this study, we demonstrated that with transfer learning, we can quickly retrain start-of-the-art DNN models with limited data provided by the prostateX challenge. The training data consists of 330 lesions, only 78 were clinical significant. Efforts were made to balance the data during training. We used ImageNet pre-trained inceptionV3 and Vgg-16 model and obtained AUC of 0.81 and 0.83 respectively on the prostateX test data, good for a 4th place finish. We noticed that models trained for different prostate zone has different sensitivity. Applying scaling factors before merging the result improves the AUC for the final result.
引用
收藏
页数:4
相关论文
共 9 条
[1]  
[Anonymous], ARXIV E PRINTS
[2]   ESUR prostate MR guidelines 2012 [J].
Barentsz, Jelle O. ;
Richenberg, Jonathan ;
Clements, Richard ;
Choyke, Peter ;
Verma, Sadhna ;
Villeirs, Geert ;
Rouviere, Olivier ;
Logager, Vibeke ;
Futterer, Jurgen J. .
EUROPEAN RADIOLOGY, 2012, 22 (04) :746-757
[3]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[4]   Evaluation of the PI-RADS Scoring System for Classifying mpMRI Findings in Men with Suspicion of Prostate Cancer [J].
Junker, Daniel ;
Schaefer, Georg ;
Edlinger, Michael ;
Kremser, Christian ;
Bektic, Jasmin ;
Horninger, Wolfgang ;
Jaschke, Werner ;
Aigner, Friedrich .
BIOMED RESEARCH INTERNATIONAL, 2013, 2013
[5]   Assessment of PI-RADS v2 for the Detection of Prostate Cancer [J].
Kasel-Seibert, Moritz ;
Lehmann, Thomas ;
Aschenbach, Rene ;
Guettler, Felix V. ;
Abubrig, Mohamed ;
Grimm, Marc-Oliver ;
Teichgraeber, Ulf ;
Franiel, Tobias .
EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (04) :726-731
[6]   Computer-Aided Detection of Prostate Cancer inMRI [J].
Litjens, Geert ;
Debats, Oscar ;
Barentsz, Jelle ;
Karssemeijer, Nico ;
Huisman, Henkjan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (05) :1083-1092
[7]   Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J].
Shin, Hoo-Chang ;
Roth, Holger R. ;
Gao, Mingchen ;
Lu, Le ;
Xu, Ziyue ;
Nogues, Isabella ;
Yao, Jianhua ;
Mollura, Daniel ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1285-1298
[8]  
Simonyan K., 2014, ARXIV E PRINTS, V1409
[9]   PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2 [J].
Weinreb, Jeffrey C. ;
Barentsz, Jelle O. ;
Choyke, Peter L. ;
Cornud, Francois ;
Haider, Masoom A. ;
Macura, Katarzyna J. ;
Margolis, Daniel ;
Schnall, Mitchell D. ;
Shtern, Faina ;
Tempany, Clare M. ;
Thoeny, Harriet C. ;
Verma, Sadna .
EUROPEAN UROLOGY, 2016, 69 (01) :16-40