Adaptive Demodulator Using Machine Learning for Orbital Angular Momentum Shift Keying

被引:95
作者
Li, Jin [1 ]
Zhang, Min [1 ]
Wang, Danshi [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
关键词
Optical vortex; machine learning; atmospheric turbulence; free-space optical communication; TURBULENCE;
D O I
10.1109/LPT.2017.2726139
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An m-ary adaptive demodulator based on machine learning for light beams carrying orbital angular momentums (OAMs) over free-space turbulence channels is proposed and demonstrated. Benefiting from natural advantages in the image recognition, convolutional neural network (CNN) is selected to construct the adaptive demodulator. Without extra space light modulators and digital signal processing at the reception, the adaptive demodulator transforms the sequence of intensity patterns of received Laguerre-Gaussian beams carrying different OAM modes into initial signals efficiently. As comparison, K-nearest neighbor (KNN), naive Bayes classifier (NBC), and back-propagation artificial neural network (BP-ANN) are also studied. Furthermore, the demodulating accuracy of 4-, 8-, and 16-ary OAM is investigated with the comprehensive consideration of the atmospheric turbulence, OAM mode spacing, and transmission distance. The simulation results show that the demodulating error rate (DER) of CNN outperforms KNN, NBC, and BP-ANN, especially under stronger turbulence and longer distance. The DER of CNN is similar to 0.86% for the 1000-m 8-OAM system under strong turbulence, similar to 30 % less than those of KNN, NBC, and BP-ANN.
引用
收藏
页码:1455 / 1458
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 2006, Pattern Recognition and Machine Learning
[2]  
[Anonymous], MATH PROBL ENG, DOI DOI 10.1155/2015/697540
[3]  
[Anonymous], 2012, P ADV NEUR INF PROC
[4]   Learning Hierarchical Features for Scene Labeling [J].
Farabet, Clement ;
Couprie, Camille ;
Najman, Laurent ;
LeCun, Yann .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1915-1929
[5]   Distributed Hierarchical Processing in the Primate Cerebral Cortex [J].
Felleman, Daniel J. ;
Van Essen, David C. .
CEREBRAL CORTEX, 1991, 1 (01) :1-47
[6]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97
[7]   Sidelobe-modulated optical vortices for free-space communication [J].
Jia, P. ;
Yang, Y. ;
Min, C. J. ;
Fang, H. ;
Yuan, X. -C. .
OPTICS LETTERS, 2013, 38 (04) :588-590
[8]   Communication with spatially modulated light through turbulent air across Vienna [J].
Krenn, Mario ;
Fickler, Robert ;
Fink, Matthias ;
Handsteiner, Johannes ;
Malik, Mehul ;
Scheidl, Thomas ;
Ursin, Rupert ;
Zeilinger, Anton .
NEW JOURNAL OF PHYSICS, 2014, 16
[9]  
LeCun Y., 2015, NATURE, V521, DOI [DOI 10.1038/NATURE14539, 10.1038/nature14539]
[10]   Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings [J].
Lei, Ting ;
Zhang, Meng ;
Li, Yuru ;
Jia, Ping ;
Liu, Gordon Ning ;
Xu, Xiaogeng ;
Li, Zhaohui ;
Min, Changjun ;
Lin, Jiao ;
Yu, Changyuan ;
Niu, Hanben ;
Yuan, Xiaocong .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e257-e257