Growth kinetics of a single-walled carbon nanotube: Exact and simulation results

被引:5
作者
Zounmenou, F. [1 ]
Hontinfinde, R. D. [2 ]
Hontinfinde, F. [1 ,3 ]
机构
[1] Univ Abomey Calavi, Dept Phys, FAST, Godomey, Benin
[2] Univ Abomey, INSPEI, Godomey, Benin
[3] Univ Abomey Calavi, IMSP Dangbo, Godomey, Benin
关键词
Exact growth kinetics; Carbon nanotube; Supersaturation; Monte Carlo simulation; Surface roughness; KINK DENSITY; DYNAMICS; VELOCITY;
D O I
10.1016/j.physa.2022.127013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The single walled (SW) carbon nanotube (CNT), discovered in 1991, is a fascinating system for studying key processes relevant to nanomaterials synthesis. It has crucial technological applications, in particular in biomedecine, sensors and telecom networks. In this work, we study numerically the growth kinetics and surface roughness of a hexagonal SWCNT with zero chiral angle using Glauber dynamics. The SWCNT growth kinetics are described in terms of Markov processes whose states are given by its upper edge profile that we mapped onto a 5-vertex model. The model parameters considered are the supersaturation of the fluid phase or driving force and the temperature. The kinetic equation of the system is solved exactly by means of the transition matrix method for small samples and the steady state growth velocity is calculated. Kinetic Monte Carlo (KMC) simulations based on the Bortz-Kalos-Lebowitz (BKL) update algorithm are used to extract some large scale properties of the model. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
[21]   TRANSPORT PROPERTIES OF SINGLE-WALLED CARBON NANOTUBE WITH INTRAMOLECULAR JUNCTIONS [J].
Zeng, Hui ;
Hu, Huifang ;
Wei, Jianwei ;
Wang, Zhiyong .
MODERN PHYSICS LETTERS B, 2010, 24 (24) :2445-2455
[22]   Analysis of Lateral Orientation of Single-Walled Carbon Nanotube on Graphite [J].
Sasaki, Naruo ;
Saitoh, Hirooki ;
Itamura, Noriaki ;
Miura, Kouji .
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2009, 7 :48-52
[23]   Cobalt sulfide catalysts for single-walled carbon nanotube synthesis [J].
Wang, Hong ;
Gu, Guibin ;
Chen, Qiang ;
Feng, Xuefei ;
Chen, Yuan .
DIAMOND AND RELATED MATERIALS, 2021, 114
[24]   Dynamic response of slacked single-walled carbon nanotube resonators [J].
Hassen M. Ouakad ;
Mohammad I. Younis .
Nonlinear Dynamics, 2012, 67 :1419-1436
[25]   Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions [J].
Lee, Wen-Jay ;
Su, Wan-Sheng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (27) :11579-11585
[26]   Single-walled carbon nanotube behavior in representative mature leachate [J].
Lozano, Paula ;
Berge, Nicole D. .
WASTE MANAGEMENT, 2012, 32 (09) :1699-1711
[27]   Preparation and characterization of polystyrene modified single-walled carbon nanotube [J].
Wang, Guojian ;
Dong, Yue ;
Liu, Lin ;
Zhao, Caixia .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (03) :1385-1390
[28]   Surface plasmon polariton generation in a single-walled carbon nanotube [J].
Moiseev, Sergey ;
Dadoenkova, Yuliya ;
Kadochkin, Aleksei S. ;
Panajotov, Krassimir ;
Fotiadi, Andrei ;
Zolotovskii, Igor .
NANOPHOTONICS VII, 2018, 10672
[29]   End structures of single-walled carbon nanotube at different temperatures [J].
Chen, W ;
Luo, CL .
ACTA PHYSICA SINICA, 2006, 55 (01) :386-392
[30]   Single-Walled Carbon Nanotube Dispersion in Tryptic Soy Broth [J].
Sloan, Arthur W. N. ;
Santana-Pereira, Alinne L. R. ;
Goswami, Joyanta ;
Liles, Mark R. ;
Davis, Virginia A. .
ACS MACRO LETTERS, 2017, 6 (11) :1228-1231