Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels

被引:58
作者
Yang, Yuan [1 ,3 ,4 ]
Chevallier, Sylvain [2 ]
Wiart, Joe [1 ,3 ]
Bloch, Isabelle [1 ,3 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, CNRS, LTCI, Paris, France
[2] Univ Versailles St Quentin, Velizy Villacoublay, France
[3] Whist Lab, Paris, France
[4] Delft Univ Technol, Dept Biomech Engn, Delft, Netherlands
基金
欧洲研究理事会;
关键词
FDA-type F -score; Time-frequency selection; Multi-class classification; Brain-computer interfaces; Motor imagery; BRAIN-COMPUTER INTERFACE; COMMON SPATIAL-PATTERNS; FEATURE-EXTRACTION; CLASSIFICATION; DISCRIMINATION; TRANSFORMATION; INFORMATION; MOVEMENTS; SIZE;
D O I
10.1016/j.bspc.2017.06.016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The essential task of a motor imagery brain-computer interface (BCI) is to extract the motor imagery related features from electroencephalogram (EEG) signals for classifying motor intentions. However, the optimal frequency band and time segment for extracting such features differ from subject to subject. In this work, we aim to improve the multi-class classification and to reduce the required EEG channel in motor imagery-based BCI by subject-specific time-frequency selection. Our method is based on a criterion namely Fisher discriminant analysis-type F-score to simultaneously select the optimal frequency band and time segment for multi-class classification. The proposed method uses only few Laplacian EEG channels (C3, Cz and C4) located around the sensorimotor area for classification. Applied to a standard multi-class BCI dataset (BCI competition III dataset Ilia), our method leads to better classification performance and smaller standard deviation across subjects compared to the state-of-art methods. Moreover, adding artifacts contaminated trials to the training dataset does not necessarily deteriorate our classification results, indicating that our method is tolerant to artifacts. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:302 / 311
页数:10
相关论文
共 58 条
[1]  
[Anonymous], 2012, EUROPEAN S ARTIFICIA
[2]  
[Anonymous], FRONT NEUROSCI SWITZ
[3]  
[Anonymous], 2013, INT J ADV MANUF TECH, DOI DOI 10.1007/S00170-013-5017-7
[4]   Grasping Others' Movements: Rapid Discrimination of Object Size From Observed Hand Movements [J].
Ansuini, Caterina ;
Cavallo, Andrea ;
Koul, Atesh ;
D'Ausilio, Alessandro ;
Taverna, Laura ;
Becchio, Cristina .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 2016, 42 (07) :918-929
[5]   Predicting Object Size from Hand Kinematics: A Temporal Perspective [J].
Ansuini, Caterina ;
Cavallo, Andrea ;
Koul, Atesh ;
Jacono, Marco ;
Yang, Yuan ;
Becchio, Cristina .
PLOS ONE, 2015, 10 (03)
[6]   Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI [J].
Arvaneh, Mahnaz ;
Guan, Cuntai ;
Ang, Kai Keng ;
Quek, Chai .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) :1865-1873
[7]   A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification [J].
Baali, Hamaza ;
Khorshidtalab, Aida ;
Mesbah, Mostefa ;
Salami, Momoh J. E. .
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2015, 3
[8]  
Barachant A, 2011, I IEEE EMBS C NEUR E, P348, DOI 10.1109/NER.2011.5910558
[9]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[10]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159