A Study on the Growth Window of Polycrystalline Diamond on Si3N4-coated N-Polar GaN

被引:22
作者
Malakoutian, Mohamadali [1 ]
Laurent, Matthew A. [1 ]
Chowdhury, Srabanti [1 ,2 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
CRYSTALS | 2019年 / 9卷 / 10期
关键词
polycrystalline diamond growth; N-polar GaN; thermal management; active device cooling; stress analysis; CHEMICAL-VAPOR-DEPOSITION; POWER-DENSITY; PHASE PURITY; FILMS; HEMTS; STRESS;
D O I
10.3390/cryst9100498
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Diamond has the most desirable thermal properties for applications in electronics. In principle, diamond is the best candidate for integration with other materials for thermal management due to its high thermal conductivity. Therefore, if low thermal boundary resistance can be developed between diamond and the semiconductor material, it would most effectively channel the heat away from areas of high power dissipation. Recent advancement of N-polar GaN in high power RF and conventional power electronics motivated us to study the diamond/Si3N4/GaN interface to understand how effectively the heat can be transferred from the GaN channel to diamond heat-sink. Prior studies showed that there are challenges in incorporating diamond with GaN while still maintaining the high crystalline quality necessary to observe the desirable thermal properties of the material. Therefore, in this study we investigated the influence of methane concentration (0.5-6%), gas pressure (40-90 Torr), sample surface temperature (600-850 degrees C), and growth duration (1 similar to 5 h) on polycrystalline diamond growth. The diamond/Si3N4/GaN interface looks abrupt with no signs of etching of the GaN for the samples with methane concentration above 2%, pressures up to 90 Torr, and temperatures < 850 degrees C, allowing for incorporation of diamond close to the active region of the device. This approach contrasts with most prior research, which require surface roughening and thick growth on the backside.
引用
收藏
页数:14
相关论文
共 49 条
[1]   QUANTITATIVE MEASUREMENT OF RESIDUAL BIAXIAL STRESS BY RAMAN-SPECTROSCOPY IN DIAMOND GROWN ON A TI ALLOY BY CHEMICAL-VAPOR-DEPOSITION [J].
AGER, JW ;
DRORY, MD .
PHYSICAL REVIEW B, 1993, 48 (04) :2601-2607
[2]   Diamond overgrown InAlN/GaN HEMT [J].
Alomari, M. ;
Dipalo, M. ;
Rossi, S. ;
Diforte-Poisson, M. -A. ;
Delage, S. ;
Carlin, J. -F. ;
Grandjean, N. ;
Gaquiere, C. ;
Toth, L. ;
Pecz, B. ;
Kohn, E. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (04) :604-608
[3]   Nanocrystalline Diamond-Gated AlGaN/GaN HEMT [J].
Anderson, Travis J. ;
Koehler, Andrew D. ;
Hobart, Karl D. ;
Tadjer, Marko J. ;
Feygelson, Tatyana I. ;
Hite, Jennifer K. ;
Pate, Bradford B. ;
Kub, Francis J. ;
Eddy, Charles R., Jr. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (11) :1382-1384
[4]   Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films [J].
Angadi, Maki A. ;
Watanabe, Taku ;
Bodapati, Arun ;
Xiao, Xingcheng ;
Auciello, Orlando ;
Carlisle, John A. ;
Eastman, Jeffrey A. ;
Keblinski, Pawel ;
Schelling, Patrick K. ;
Phillpot, Simon R. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
[5]   Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures [J].
Ashkinazi, Evgeny E. ;
Khmelnitskii, Roman A. ;
Sedov, Vadim S. ;
Khomich, Andrew A. ;
Khomich, Alexander V. ;
Ralchenko, Viktor G. .
CRYSTALS, 2017, 7 (06)
[6]   DIAMOND CHEMICAL VAPOR-DEPOSITION [J].
CELII, FG ;
BUTLER, JE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1991, 42 (01) :643-684
[7]   Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate [J].
Chen, Yi-Chun ;
Chang, Li .
RSC ADVANCES, 2014, 4 (36) :18945-18950
[8]   AlGaN/GaN HEMT With 300-GHz fmax [J].
Chung, Jinwook W. ;
Hoke, William E. ;
Chumbes, Eduardo M. ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (03) :195-197
[9]  
Davies, 2009, CVD Diamond for Electronic Devices and Sensors, P3
[10]  
Dumka D.C., 2013, IEEE 2013, Compound Semiconductor Integrated Circuit Symposium (CSICS), P1, DOI DOI 10.1109/CSICS.2013.6659225