Impact of artificial intelligence on colorectal polyp detection

被引:10
作者
Antonelli, Giulio [1 ]
Badalamenti, Matteo [2 ]
Hassan, Cesare [1 ]
Repici, Alessandro [2 ,3 ]
机构
[1] Nuovo Regina Margherita Hosp, Gastroenterol Unit, Rome, Italy
[2] Humanitas Clin & Res Ctr IRCCS, Div Gastroenterol, Digest Endoscopy Unit, I-20089 Rozzano, Italy
[3] Humanitas Univ, Dept Biomed Sci, Pieve Emanuele, MI, Italy
关键词
Artificial intelligence; CADe system; Adenoma detection rate; Colonoscopy; ADENOMA DETECTION; COLONOSCOPY; RISK; CANCER; SYSTEM;
D O I
10.1016/j.bpg.2020.101713
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Since colonoscopy and polypectomy were introduced, Colorectal Cancer (CRC) incidence and mortality decreased significantly. Although we have entered the era of quality measurement and improvement, literature shows that a considerable amount of colorectal neoplasia is still missed by colonoscopists up to 25%, leading to an high rate of interval colorectal cancer that account for nearly 10% of all diagnosed CRC. Two main reasons have been recognised: recognition failure and mucosal exposure. For this purpose, Artificial Intelligence (AI) systems have been recently developed that identify a "hot" area during the endoscopic examination. In retrospective studies, where the systems are tested with a batch of unknown images, deep learning systems have shown very good performances, with high levels of accuracy. Of course, this setting may not reflect actual clinical practice where different pitfalls can occur, like sub -optimal bowel preparation or poor examination technique. For this reason, a number of randomised clinical trials have recently been published where AI was tested in real time during endoscopic exami-nations. We present here an overview on recent literature addressing the performance of Computer Assisted Detection (CADe) of colorectal polyps in colonoscopy. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 32 条
[21]   Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience [J].
Misawa, Masashi ;
Kudo, Shin-ei ;
Mori, Yuichi ;
Cho, Tomonari ;
Kataoka, Shinichi ;
Yamauchi, Akihiro ;
Ogawa, Yushi ;
Maeda, Yasuharu ;
Takeda, Kenichi ;
Ichimasa, Katsuro ;
Nakamura, Hiroki ;
Yagawa, Yusuke ;
Toyoshima, Naoya ;
Ogata, Noriyuki ;
Kudo, Toyoki ;
Hisayuki, Tomokazu ;
Hayashi, Takemasa ;
Wakamura, Kunihiko ;
Baba, Toshiyuki ;
Ishida, Fumio ;
Itoh, Hayato ;
Roth, Holger ;
Oda, Masahiro ;
Mori, Kensaku .
GASTROENTEROLOGY, 2018, 154 (08) :2027-+
[22]   Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy A Prospective Study [J].
Mori, Yuichi ;
Kudo, Shin-ei ;
Misawa, Masashi ;
Saito, Yutaka ;
Ikematsu, Hiroaki ;
Hotta, Kinichi ;
Ohtsuka, Kazuo ;
Urushibara, Fumihiko ;
Kataoka, Shinichi ;
Ogawa, Yushi ;
Maeda, Yasuharu ;
Takeda, Kenichi ;
Nakamura, Hiroki ;
Ichimasa, Katsuro ;
Kudo, Toyoki ;
Hayashi, Takemasa ;
Wakamura, Kunihiko ;
Ishida, Fumio ;
Inoue, Haruhiro ;
Itoh, Hayato ;
Oda, Masahiro ;
Mori, Kensaku .
ANNALS OF INTERNAL MEDICINE, 2018, 169 (06) :357-+
[23]   Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial [J].
Repici, Alessandro ;
Badalamenti, Matteo ;
Maselli, Roberta ;
Correale, Loredana ;
Radaelli, Franco ;
Rondonotti, Emanuele ;
Ferrara, Elisa ;
Spadaccini, Marco ;
Alkandari, Asma ;
Fugazza, Alessandro ;
Anderloni, Andrea ;
Galtieri, Piera Alessia ;
Pellegatta, Gaia ;
Carrara, Silvia ;
Di Leo, Milena ;
Craviotto, Vincenzo ;
Lamonaca, Laura ;
Lorenzetti, Roberto ;
Andrealli, Alida ;
Antonelli, Giulio ;
Wallace, Michael ;
Sharma, Prateek ;
Rosch, Thomas ;
Hassan, Cesare .
GASTROENTEROLOGY, 2020, 159 (02) :512-+
[24]   Colorectal cancers soon after colonoscopy: a pooled multicohort analysis [J].
Robertson, Douglas J. ;
Lieberman, David A. ;
Winawer, Sidney J. ;
Ahnen, Dennis J. ;
Baron, John A. ;
Schatzkin, Arthur ;
Cross, Amanda J. ;
Zauber, Ann G. ;
Church, Timothy R. ;
Lance, Peter ;
Greenberg, E. Robert ;
Martinez, Maria Elena .
GUT, 2014, 63 (06) :949-956
[25]   Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study [J].
Su, Jing-Ran ;
Li, Zhen ;
Shao, Xue-Jun ;
Ji, Chao-Ran ;
Ji, Rui ;
Zhou, Ru-Chen ;
Li, Guang-Chao ;
Liu, Guan-Qun ;
He, Yi-Shan ;
Zuo, Xiu-Li ;
Li, Yan-Qing .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (02) :415-+
[26]   Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy [J].
Urban, Gregor ;
Tripathi, Priyam ;
Alkayali, Talal ;
Mittal, Mohit ;
Jalali, Farid ;
Karnes, William ;
Baldi, Pierre .
GASTROENTEROLOGY, 2018, 155 (04) :1069-+
[27]  
VANDERSOMMEN F, 2020, GUT, DOI DOI 10.1136/GUTJNL-2019-320466.GUTJNL-2019-320466
[28]   Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study [J].
Wang, Pu ;
Liu, Peixi ;
Brown, Jeremy R. Glissen ;
Berzin, Tyler M. ;
Zhou, Guanyu ;
Lei, Shan ;
Liu, Xiaogang ;
Li, Liangping ;
Xiao, Xun .
GASTROENTEROLOGY, 2020, 159 (04) :1252-+
[29]  
Wang P, 2020, LANCET GASTROENTEROL, V5, P343, DOI [10.1016/S2468-1253(19)30411-X, 10.1016/S2468-1253(19)30411-x]
[30]   Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study [J].
Wang, Pu ;
Berzin, Tyler M. ;
Brown, Jeremy Romek Glissen ;
Bharadwaj, Shishira ;
Becq, Aymeric ;
Xiao, Xun ;
Liu, Peixi ;
Li, Liangping ;
Song, Yan ;
Zhang, Di ;
Li, Yi ;
Xu, Guangre ;
Tu, Mengtian ;
Liu, Xiaogang .
GUT, 2019, 68 (10) :1813-1819