Nondiscrete topological groups with many discrete subgroups

被引:12
作者
Morris, SA
Obraztsov, VN
机构
[1] Univ S Australia, Adelaide, SA 5000, Australia
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
关键词
group; topological group; Hausdorff topology; free amalgam; cancellation diagram;
D O I
10.1016/S0166-8641(97)00086-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that for each positive integer n, there exists a nondiscrete Hausdorff topological group of cardinality N-n, with no proper subgroup of the same cardinality and with each proper subgroup discrete, This result is typical of those proved here using a method introduced by A.Yu. Ol'shanskii. It is also shown that there exists a continuum of pairwise algebraically nonisomorphic nondiscrete Hausdorff topological groups, each of which contains every finite group of odd order and has all of its proper subgroups finite. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 14 条
[1]  
Chang CC., 1973, MODEL THEORY
[2]  
Isiwata, 1955, SCI REP TOKYO KYOI A, V5, P8
[3]  
KOUROVKA, 1992, NOTEBOOK UNSOLVED PR
[4]  
Matumoto T, 1989, HIROSHIMA MATH J, V19, P209
[5]   THE CIRCLE GROUP [J].
MORRIS, SA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 36 (02) :279-282
[6]   A CHARACTERIZATION OF THE TOPOLOGICAL GROUP OF REAL NUMBERS [J].
MORRIS, SA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (03) :473-475
[7]  
MORRIS SA, IN PRESS EMBEDDING F
[8]   A new embedding scheme for groups and some applications [J].
Obraztsov, VN .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 :267-288
[9]   ON CERTAIN INFINITE GROUPS [J].
OBRAZTSOV, VN .
SIBERIAN MATHEMATICAL JOURNAL, 1991, 32 (01) :79-85
[10]  
OBRAZTSOV VN, 1990, VINITI, V8