Quantum-key distribution with vector modes

被引:0
作者
Ndagano, B. [1 ]
Nape, I [1 ]
Perez-Garcia, B. [1 ,2 ]
Scholes, S. [1 ]
Hernandez-Aranda, R., I [2 ]
Roux, F. S. [3 ]
Konrad, T. [4 ]
Forbes, A. [1 ]
机构
[1] Univ Witwatersrand, Sch Phys, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Tecnol Monterrey, Photon & Math Opt Grp, Monterrey 64849, Mexico
[3] Natl Metrol Inst South Africa, Meiring Naude Rd, Pretoria, South Africa
[4] Univ KwaZulu Natal, Coll Chem & Phys, Private Bag X54001, ZA-4000 Durban, South Africa
来源
COMPLEX LIGHT AND OPTICAL FORCES XI | 2017年 / 10120卷
关键词
quantum key distribution; vector modes; entanglement; BEAMS;
D O I
10.1117/12.2251465
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-dimensional encoding using higher degrees of freedom has become topical in quantum communication protocols. When taking advantage of entanglement correlations, the state space can be made even larger. Here, we exploit the entanglement between two dimensional space and polarization qubits, to realize a four-dimensional quantum key distribution protocol. This is achieved by using entangled states as a basis, analogous to the Bell basis, rather than typically encoding information on individual qubits. The encoding and decoding in the required complementary bases is achieved by manipulating the Pancharatnam-Berry phase with a single optical element: a q-plate. Our scheme shows a transmission fidelity of 0.98 and secret key rate of 0.9 bits per photon. While the use of only static elements is preferable, we show that the low secret key rate is a consequence of the filter based detection of the modes, rather than our choice of encoding modes.
引用
收藏
页数:5
相关论文
共 24 条
  • [1] [Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
  • [2] Quantum cryptography using larger alphabets
    Bechmann-Pasquinucci, H
    Tittel, W
    [J]. PHYSICAL REVIEW A, 2000, 61 (06) : 6
  • [3] Security of quantum key distribution using d-level systems -: art. no. 127902
    Cerf, NJ
    Bourennane, M
    Karlsson, A
    Gisin, N
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (12) : 4 - 127902
  • [4] On the resilience of scalar and vector vortex modes in turbulence
    Cox, Mitchell A.
    Rosales-Guzman, Carmelo
    Lavery, Martin P. J.
    Versfeld, Daniel J.
    Forbes, Andrew
    [J]. OPTICS EXPRESS, 2016, 24 (16): : 18105 - 18113
  • [5] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [6] Creation and detection of optical modes with spatial light modulators
    Forbes, Andrew
    Dudley, Angela
    McLaren, Melanie
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2016, 8 (02): : 200 - 227
  • [7] Experimental quantum cryptography with qutrits
    Groblacher, Simon
    Jennewein, Thomas
    Vaziri, Alipasha
    Weihs, Gregor
    Zeilinger, Anton
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [8] High-dimensional encoding based on classical nonseparability
    Li, Pengyun
    Wang, Bo
    Zhang, Xiangdong
    [J]. OPTICS EXPRESS, 2016, 24 (13): : 15143 - 15159
  • [9] Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases
    Mafu, Mhlambululi
    Dudley, Angela
    Goyal, Sandeep
    Giovannini, Daniel
    McLaren, Melanie
    Padgett, Miles J.
    Konrad, Thomas
    Petruccione, Francesco
    Luetkenhaus, Norbert
    Forbes, Andrew
    [J]. PHYSICAL REVIEW A, 2013, 88 (03):
  • [10] Entanglement of the orbital angular momentum states of photons
    Mair, A
    Vaziri, A
    Weihs, G
    Zeilinger, A
    [J]. NATURE, 2001, 412 (6844) : 313 - 316