Affinely adjustable robust AC-DC optimal power flow considering correlation of wind power

被引:4
作者
Tian, Yuan [1 ]
Wang, Keyou [1 ]
Li, Guojie [1 ]
Zhou, Ye [1 ]
Luo, Jinshan [2 ]
Wang, Ying [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai, Peoples R China
[2] State Power Econ Res Inst, Beijing, Peoples R China
关键词
load flow; wind power; power generation dispatch; optimisation; affinely adjustable robust optimisation method; AC-DC optimal power flow; AC-DC AAROPF; wind power correlation; wind power outputs; affine policies; redispatch process; tractable model; simplified pair copula; modified AC-DC IEEE 30-bus system; modified AC-DC IEEE 118-bus system; forecast error confidence intervals; SYSTEMS; MODEL;
D O I
10.1049/iet-rpg.2017.0886
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind power outputs will bring larger computational error in actual operation without considering the correlation. This study presents an affinely adjustable robust optimisation method for AC-DC optimal power flow (AC-DC AAROPF) considering the correlation of wind power. Affine policies are utilised in the re-dispatch process to ensure the feasibility of the infinite scenarios of uncertainties. After transforming AC-DC AAROPF to a tractable model, a novel approach based on simplified pair copula to consider multiple dependence of wind power is presented. The AC-DC AAROPF is evaluated on the modified AC-DC IEEE 30-bus and 118-bus system. Results show a modest increase in expected cost for reasonable levels of uncertainty representing forecast error confidence intervals, which obtains a more robust solution with higher successful rates.
引用
收藏
页码:1478 / 1485
页数:8
相关论文
共 21 条
[1]   Impact of Renewable Energy Sources on Steady-state Stability of Weak AC/DC Systems [J].
Aik, Denis Lee Hau ;
Andersson, Goran .
CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2017, 3 (04) :419-430
[2]   Optimal power flow tool for mixed high-voltage alternating current and high-voltage direct current systems for grid integration of large wind power plants [J].
Araguees-Penalba, Monica ;
Egea Alvarez, Agusti ;
Galceran Arellano, Samuel ;
Gomis-Bellmunt, Oriol .
IET RENEWABLE POWER GENERATION, 2015, 9 (08) :876-881
[3]   Robust AC Optimal Power Flow for Power Networks With Wind Power Generation [J].
Bai, Xiaoqing ;
Qu, Liyan ;
Qiao, Wei .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) :4163-4164
[4]   Second-Order Cone Programming for Optimal Power Flow in VSC-Type AC-DC Grids [J].
Baradar, Mohamadreza ;
Hesamzadeh, Mohammad Reza ;
Ghandhari, Mehrdad .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4282-4291
[5]  
Becker R., 2017, IEEE T SUSTAIN ENERG, V99, P1
[6]   Decomposed Predictor-Corrector Interior Point Method for Dynamic Optimal Power Flow [J].
Chung, C. Y. ;
Yan, Wei ;
Liu, Fang .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (03) :1030-1039
[7]   Robust Multi-Period OPF With Storage and Renewables [J].
Jabr, Rabih A. ;
Karaki, Sami ;
Korbane, Joe Akl .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (05) :2790-2799
[8]   Adjustable Robust OPF With Renewable Energy Sources [J].
Jabr, Rabih A. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4742-4751
[9]  
Ma Z., 2017, PROT CONTROL MODERN, V2, P211
[10]  
Mesanovic A., 2018, IEEE T POWER SYST, P1