Early identification of Tuta absoluta in tomato plants using deep learning

被引:39
|
作者
Mkonyi, Lilian [1 ,4 ]
Rubanga, Denis [2 ]
Richard, Mgaya [3 ]
Zekeya, Never [1 ]
Sawahiko, Shimada [2 ]
Maiseli, Baraka [4 ]
Machuve, Dina [1 ]
机构
[1] Nelson Mandela African Inst Sci & Technol, POB 447, Arusha, Tanzania
[2] Tokyo Univ Agr, Setagaya Ku, Tokyo 1568502, Japan
[3] Sokoine Univ Agr, POB 3000, Morogoro, Tanzania
[4] Univ Dar es Salaam, POB 33335, Dar Es Salaam, Tanzania
关键词
Tuta absoluta; Classification; Convolutional neural network; Transfer learning;
D O I
10.1016/j.sciaf.2020.e00590
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The agricultural sector is highly challenged by plant pests and diseases. A high-yielding crop, such as tomato with high economic returns, can greatly increase the income of smallholder farmers income when its health is maintained. This work introduces an approach to strengthen phytosanitary capacity and systems to help solve tomato plant pest Tuta absoluta devastation at early tomato growth stages. We present a deep learning approach to identify tomato leaf miner pest (Tuta absoluta) invasion. The Convolutional Neural Network architectures (VGG16, VGG19, and ResNet50) were used in training classifiers on tomato image dataset captured from the field containing healthy and infested tomato leaves. We evaluated performance of each classifier by considering accuracy of classifying the tomato canopy into correct category. Experimental results show that VGG16 attained the highest accuracy of 91.9% in classifying tomato plant leaves into correct categories. Our model may be used to establish methods for early detection of Tuta absoluta pest invasion at early tomato growth stages, hence assisting farmers overcome yield losses. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Enhancing Tuta absoluta Detection on Tomato Plants: Ensemble Techniques and Deep Learning
    Giakoumoglou, Nikolaos
    Pechlivani, Eleftheria-Maria
    Frangakis, Nikolaos
    Tzovaras, Dimitrios
    AI, 2023, 4 (04) : 996 - 1009
  • [2] A Deep Learning-based Mobile Application for Segmenting Tuta Absoluta's Damage on Tomato Plants
    Loyani, Loyani
    Machuve, Dina
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (05) : 7730 - 7737
  • [3] Determination of tomato leafminer: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) damage on tomato using deep learning instance segmentation method
    Tahsin Uygun
    Mehmet Metin Ozguven
    European Food Research and Technology, 2024, 250 : 1837 - 1852
  • [4] Determination of tomato leafminer: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) damage on tomato using deep learning instance segmentation method
    Uygun, Tahsin
    Ozguven, Mehmet Metin
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2024, 250 (06) : 1837 - 1852
  • [5] A Multispectral Dataset for the Detection of Tuta Absoluta and Leveillula Taurica in Tomato Plants
    Georgantopoulos, P. S.
    Papadimitriou, D.
    Constantinopoulos, C.
    Manios, T.
    Daliakopoulos, I. N.
    Kosmopoulos, D.
    SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [6] Chemotaxis of Tuta absoluta to tomato plants exposed to methyl jasmonate and conspecific injuries
    Weber, Nelson Cristiano
    Sant'Ana, Josue
    Redaelli, Luiza Rodrigues
    de Assis, Larissa Souza
    JOURNAL OF APPLIED ENTOMOLOGY, 2024, 148 (05) : 508 - 517
  • [7] Segmentation of Tuta Absoluta's Damage on Tomato Plants: A Computer Vision Approach
    Loyani, Loyani K.
    Bradshaw, Karen
    Machuve, Dina
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (14) : 1107 - 1127
  • [8] Segmentation-based quantification of Tuta absoluta's damage on tomato plants
    Loyani, Loyani
    SMART AGRICULTURAL TECHNOLOGY, 2024, 7
  • [9] Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply
    Larbat, R.
    Adamowicz, S.
    Robin, C.
    Han, P.
    Desneux, N.
    Le Bot, J.
    PLANT BIOLOGY, 2016, 18 (03) : 495 - 504
  • [10] Tomato transcriptomic response to Tuta absoluta infestation
    D'Esposito, Daniela
    Manzo, Daniele
    Ricciardi, Alessandro
    Garonna, Antonio Pietro
    De Natale, Antonino
    Frusciante, Luigi
    Pennacchio, Francesco
    Ercolano, Maria Raffaella
    BMC PLANT BIOLOGY, 2021, 21 (01)