Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration

被引:18
作者
Li, Bo [1 ]
Niessen, Wiro J. [1 ,2 ]
Klein, Stefan [1 ]
de Groot, Marius [1 ,3 ]
Ikram, M. Arfan [1 ,3 ,4 ]
Vernooij, Meike W. [1 ,3 ]
Bron, Esther E. [1 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[2] Delft Univ Technol, Imaging Phys, Appl Sci, Delft, Netherlands
[3] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[4] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
Segmentation; Registration; Diffusion MRI; Deep learning; CNN; Longitudinal; White matter tract; WHITE-MATTER DEGENERATION; JOINT SEGMENTATION; PATHWAYS;
D O I
10.1016/j.neuroimage.2021.118004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the analysis of white matter tracts from N = 8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro-and microstructural brain changes over time.
引用
收藏
页数:11
相关论文
共 69 条
[61]  
Vlontzos A., 2018, BRIT MACH VIS C
[62]   Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification [J].
Vrooman, Henri A. ;
Cocosco, Chris A. ;
van der Lijn, Fedde ;
Stokking, Rik ;
Ikram, M. Arfan ;
Vernooij, Meike W. ;
Breteler, Monique M. B. ;
Niessen, Wiro J. .
NEUROIMAGE, 2007, 37 (01) :71-81
[63]   TractSeg - Fast and accurate white matter tract segmentation [J].
Wasserthal, Jakob ;
Neher, Peter ;
Maier-Hein, Klaus H. .
NEUROIMAGE, 2018, 183 :239-253
[64]   MAP MRF joint segmentation and registration of medical images [J].
Wyatt, PP ;
Noble, JA .
MEDICAL IMAGE ANALYSIS, 2003, 7 (04) :539-552
[65]   DeepAtlas: Joint Semi-supervised Learning of Image Registration and Segmentation [J].
Xu, Zhenlin ;
Niethammer, Marc .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :420-429
[66]   Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors [J].
Yendiki, Anastasia ;
Reuter, Martin ;
Wilkens, Paul ;
Rosas, H. Diana ;
Fischl, Bruce .
NEUROIMAGE, 2016, 127 :277-286
[67]   A variational framework for integrating segmentation and registration through active contours [J].
Yezzi, A ;
Zöllei, L ;
Kapur, T .
MEDICAL IMAGE ANALYSIS, 2003, 7 (02) :171-185
[68]   Differences: An example study using amyotrophic lateral sclerosis [J].
Zhang, Hui ;
Avants, Brian B. ;
Yushkevich, Paul A. ;
Woo, John H. ;
Wang, Sumei ;
McCluskey, Leo F. ;
Elman, Lauren B. ;
Melhem, Elias R. ;
Gee, James C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (11) :1585-1597
[69]  
Zhu W., 2020, IEEE WINTER C APPL C, P3617