Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration

被引:15
作者
Li, Bo [1 ]
Niessen, Wiro J. [1 ,2 ]
Klein, Stefan [1 ]
de Groot, Marius [1 ,3 ]
Ikram, M. Arfan [1 ,3 ,4 ]
Vernooij, Meike W. [1 ,3 ]
Bron, Esther E. [1 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[2] Delft Univ Technol, Imaging Phys, Appl Sci, Delft, Netherlands
[3] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[4] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
Segmentation; Registration; Diffusion MRI; Deep learning; CNN; Longitudinal; White matter tract; WHITE-MATTER DEGENERATION; JOINT SEGMENTATION; PATHWAYS;
D O I
10.1016/j.neuroimage.2021.118004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the analysis of white matter tracts from N = 8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro-and microstructural brain changes over time.
引用
收藏
页数:11
相关论文
共 69 条
  • [1] Unified segmentation
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2005, 26 (03) : 839 - 851
  • [2] VoxelMorph: A Learning Framework for Deformable Medical Image Registration
    Balakrishnan, Guha
    Zhao, Amy
    Sabuncu, Mert R.
    Guttag, John
    Dalca, Adrian, V
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1788 - 1800
  • [3] White matter structural decline in normal ageing: A prospective longitudinal study using tract-based spatial statistics
    Barrick, Thomas R.
    Charlton, Rebecca A.
    Clark, Chris A.
    Markus, Hugh S.
    [J]. NEUROIMAGE, 2010, 51 (02) : 565 - 577
  • [4] Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration
    Bastiaansen, Wietske A. P.
    Rousian, Melek
    Steegers-Theunissen, Regine P. M.
    Niessen, Wiro J.
    Koning, Anton
    Klein, Stefan
    [J]. BIOMEDICAL IMAGE REGISTRATION (WBIR 2020), 2020, 12120 : 34 - 43
  • [5] Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
    Behrens, T. E. J.
    Berg, H. Johansen
    Jbabdi, S.
    Rushworth, M. F. S.
    Woolrich, M. W.
    [J]. NEUROIMAGE, 2007, 34 (01) : 144 - 155
  • [6] Bishop C.M., 2006, Pattern Recognition and Machine Learning
  • [7] Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
    Bortsova, Gerda
    Dubost, Florian
    Hogeweg, Laurens
    Katramados, Ioannis
    de Bruijne, Marleen
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 810 - 818
  • [8] Cao Yan, 2006, Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, V2006, P67
  • [9] SegFlow: Joint Learning for Video Object Segmentation and Optical Flow
    Cheng, Jingchun
    Tsai, Yi-Hsuan
    Wang, Shengjin
    Yang, Ming-Hsuan
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 686 - 695
  • [10] Tracking neuronal fiber pathways in the living human brain
    Conturo, TE
    Lori, NF
    Cull, TS
    Akbudak, E
    Snyder, AZ
    Shimony, JS
    McKinstry, RC
    Burton, H
    Raichle, ME
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) : 10422 - 10427