LIST STAR EDGE-COLORING OF SUBCUBIC GRAPHS

被引:11
作者
Kerdjoudj, Samia [1 ]
Kostochka, Alexandr [2 ,3 ]
Raspaud, Andre [4 ]
机构
[1] USTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Illinois, Urbana, IL 61801 USA
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] Univ Bordeaux, LaBRI, 351 Cours Liberat, F-33405 Talence, France
基金
俄罗斯基础研究基金会;
关键词
graph coloring; edge coloring; star coloring; planar graphs;
D O I
10.7151/dmgt.2037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch'(st)(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvorak, Mohar and Samal asked whether the list star chromatic index of every subcubic graph is at most 7. We prove that it is at most 8. We also prove that if the maximum average degree of a subcubic graph G is less than 7/3 (respectively, 5/2) then ch'(st) (G) <= 5 (respectively, ch'(st)(G) <= 6).
引用
收藏
页码:1037 / 1054
页数:18
相关论文
共 10 条
  • [1] Star Edge Coloring of Some Classes of Graphs
    Bezegova, L'udmila
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    Skrekovski, Riste
    [J]. JOURNAL OF GRAPH THEORY, 2016, 81 (01) : 73 - 82
  • [2] Borodin O., 1977, ABSTRACTS 4 ALL UNIO, P127
  • [3] [邓凯 DENG Kai], 2011, [山东大学学报. 理学版, Journal of Shandong University. Natural Science], V46, P84
  • [4] Star Chromatic Index
    Dvorak, Zdenek
    Mohar, Bojan
    Samal, Robert
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (03) : 313 - 326
  • [5] Fertin G., 2001, LECT NOTES COMPUT SC, V2204, P140
  • [6] ACYCLIC COLORINGS OF PLANAR GRAPHS
    GRUNBAUM, B
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) : 390 - 408
  • [7] On strong edge-colouring of subcubic graphs
    Hocquard, Herve
    Montassier, Mickael
    Raspaud, Andre
    Valicov, Petru
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2467 - 2479
  • [8] The colour theorems of Brooks and Gallai extended
    Kostochka, AV
    Stiebitz, M
    Wirth, B
    [J]. DISCRETE MATHEMATICS, 1996, 162 (1-3) : 299 - 303
  • [9] Liu X, 2008, J LANZHOU U NAT SCI, V44, P94
  • [10] On strong list edge coloring of subcubic graphs
    Zhu, Hong
    Miao, Zhengke
    [J]. DISCRETE MATHEMATICS, 2014, 333 : 6 - 13