Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth

被引:19
作者
Wang, Qi [1 ]
Yan, Jingda [1 ]
Gai, Chunyi [1 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, Chengdu 611130, Sichuan, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 03期
关键词
Chemotaxis; Logistic growth; Steady state; Bifurcation analysis; Asymptotic behavior; STEADY-STATES; BLOW-UP; SYSTEM; DIFFUSION; BOUNDEDNESS; BIFURCATION; DYNAMICS;
D O I
10.1007/s00033-016-0648-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stationary Keller-Segel chemotaxis models with logistic cellular growth over a one-dimensional region subject to the Neumann boundary condition. We show that nonconstant solutions emerge in the sense of Turing's instability as the chemotaxis rate. surpasses a threshold number. By taking the chemotaxis rate as the bifurcation parameter, we carry out bifurcation analysis on the system to obtain the explicit formulas of bifurcation values and small amplitude nonconstant positive solutions. Moreover, we show that solutions stay strictly positive in the continuum of each branch. The stabilities of these steady-state solutions are well studied when the creation and degradation rate of the chemical is assumed to be a linear function. Finally, we investigate the asymptotic behaviors of the monotone steady states. We construct solutions with interesting patterns such as a boundary spike when the chemotaxis rate is large enough and/or the cell motility is small.
引用
收藏
页数:25
相关论文
共 50 条
[1]   Qualitative analysis of stationary Keller–Segel chemotaxis models with logistic growth [J].
Qi Wang ;
Jingda Yan ;
Chunyi Gai .
Zeitschrift für angewandte Mathematik und Physik, 2016, 67
[2]   Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth [J].
Jin, Ling ;
Wang, Qi ;
Zhang, Zengyan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02)
[3]   Keller-Segel Chemotaxis Models: A Review [J].
Arumugam, Gurusamy ;
Tyagi, Jagmohan .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[4]   Keller-Segel Chemotaxis Models: A Review [J].
Gurusamy Arumugam ;
Jagmohan Tyagi .
Acta Applicandae Mathematicae, 2021, 171
[5]   On the minimal Keller-Segel system with logistic growth [J].
Myint, Aung Zaw ;
Wang, Jianping ;
Wang, Mingxin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
[6]   STATIONARY SOLUTIONS FOR SOME SHADOW SYSTEM OF THE KELLER-SEGEL MODEL WITH LOGISTIC GROWTH [J].
Tsujikawa, Tohru ;
Kuto, Kousuke ;
Miyamoto, Yasuhito ;
Izuhara, Hirofumi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (05) :1023-1034
[7]   TRAVELING WAVES IN A KELLER-SEGEL MODEL WITH LOGISTIC GROWTH [J].
Li, Tong ;
Park, Jeungeun .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (03) :829-853
[8]   BOUNDEDNESS IN LOGISTIC KELLER-SEGEL MODELS WITH NONLINEAR DIFFUSION AND SENSITIVITY FUNCTIONS [J].
Wang, Qi ;
Yang, Jingyue ;
Yu, Feng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (09) :5021-5036
[9]   On spectra of linearized operators for Keller-Segel models of chemotaxis [J].
Dejak, S. I. ;
Lushnikov, P. M. ;
Ovchinnikov, Yu N. ;
Sigal, I. M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (15) :1245-1254
[10]   The existence and stability of spikes in the one-dimensional Keller-Segel model with logistic growth [J].
Kong, Fanze ;
Wei, Juncheng ;
Xu, Liangshun .
JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (01)