Effects of local compositional and structural disorder on vacancy formation in entropy-stabilized oxides from first-principles

被引:28
作者
Chae, Sieun [1 ]
Williams, Logan [1 ]
Lee, Jihang [1 ]
Heron, John T. [1 ]
Kioupakis, Emmanouil [1 ]
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
TOTAL-ENERGY CALCULATIONS; TEMPERATURE; TRANSPORT; ALLOYS;
D O I
10.1038/s41524-022-00780-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Entropic stabilization has evolved into a strategy to create new oxide materials and realize novel functional properties engineered through the alloy composition. Achieving an atomistic understanding of these properties to enable their design, however, has been challenging due to the local compositional and structural disorder that underlies their fundamental structure-property relationships. Here, we combine high-throughput atomistic calculations and linear regression algorithms to investigate the role of local configurational and structural disorder on the thermodynamics of vacancy formation in (MgCoNiCuZn)O-based entropy-stabilized oxides (ESOs) and their influence on the electrical properties. We find that the cation-vacancy formation energies decrease with increasing local tensile strain caused by the deviation of the bond lengths in ESOs from the equilibrium bond length in the binary oxides. The oxygen-vacancy formation strongly depends on structural distortions associated with the local configuration of chemical species. Vacancies in ESOs exhibit deep thermodynamic transition levels that inhibit electrical conduction. By applying the charge-neutrality condition, we determine that the equilibrium concentrations of both oxygen and cation vacancies increase with increasing Cu mole fraction. Our results demonstrate that tuning the local chemistry and associated structural distortions by varying alloy composition acts an engineering principle that enables controlled defect formation in multi-component alloys.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Phase stability and distortion in high-entropy oxides [J].
Anand, G. ;
Wynn, Alex P. ;
Handley, Christopher M. ;
Freeman, Colin L. .
ACTA MATERIALIA, 2018, 146 :119-125
[2]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[3]  
[Anonymous], 2003, J CHEM PHYS, DOI DOI 10.1063/1.1564060
[4]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[5]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[6]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[7]   Exchange anisotropy - a review [J].
Berkowitz, AE ;
Takano, K .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :552-570
[8]   The AFLOW standard for high-throughput materials science calculations [J].
Calderon, Camilo E. ;
Plata, Jose J. ;
Toher, Cormac ;
Oses, Corey ;
Levy, Ohad ;
Fornari, Marco ;
Natan, Amir ;
Mehl, Michael J. ;
Hart, Gus ;
Nardelli, Marco Buongiorno ;
Curtarolo, Stefano .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 :233-238
[9]   Statistical approach to obtaining vacancy formation energies in high-entropy crystals from first principles calculations: Application to a high-entropy diboride [J].
Daigle, S. E. ;
Brenner, D. W. .
PHYSICAL REVIEW MATERIALS, 2020, 4 (12)
[10]   Semiconducting High-Entropy Chalcogenide Alloys with Ambi-ionic Entropy Stabilization and Ambipolar Doping [J].
Deng, Zihao ;
Olvera, Alan ;
Casamento, Joseph ;
Lopez, Juan S. ;
Williams, Logan ;
Lu, Ruiming ;
Shi, Guangsha ;
Poudeu, Pierre F. P. ;
Kioupakis, Emmanouil .
CHEMISTRY OF MATERIALS, 2020, 32 (14) :6070-6077