Regularity of the Inverse of a Homeomorphism with Finite Inner Distortion

被引:1
作者
Guo, Chang Yu [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Mapping of finite distortion; mappings of finite inner distortion; bi-Sobolev homeomorphism; Condition N on a.e. sphere; modulus of rectifiable surfaces; SOBOLEV SPACE W-1; W-N-1; MAPPINGS;
D O I
10.1007/s10114-014-3619-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f : Omega -> f(Omega) subset of R-n be a W-1,W-1-homeomorphism with L-1-integrable inner distortion. We show that finiteness of min{lip(f)(x), k(f)(x)}, for every x is an element of Omega\E, implies that f(-1) is an element of W-1,W-n and has finite distortion, provided that the exceptional set E has sigma-finite H-1-measure. Moreover, f has finite distortion, differentiable a.e. and the Jacobian J(f) > 0 a.e.
引用
收藏
页码:1999 / 2013
页数:15
相关论文
共 22 条
[1]   Absolute continuity of quasiconformal mappings on curves [J].
Balogh, Zoltan M. ;
Koskela, Pekka ;
Rogovin, Sari .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (03) :645-664
[2]   Homeomorphisms in the Sobolev space W1,n-1 [J].
Csornyei, Marianna ;
Hencl, Stanislav ;
Maly, Jan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 644 :221-235
[3]   Bi-Sobolev homeomorphism with zero Jacobian almost everywhere [J].
D'Onofrio, Luigi ;
Hencl, Stanislav ;
Schiattarella, Roberta .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) :139-170
[4]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[5]   EXTREMAL LENGTH AND FUNCTIONAL COMPLETION [J].
FUGLEDE, B .
ACTA MATHEMATICA, 1957, 98 (3-4) :171-219
[6]   The limit of W1,1 homeomorphisms with finite distortion [J].
Fusco, N. ;
Moscariello, G. ;
Sbordone, C. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) :377-390
[7]   Mappings of Finite Inner Distortion: Global Homeomorphism Theorem [J].
Guo, Chang-Yu .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) :1969-1991
[8]  
Heinonen J., 2015, Sobolev Spaces on Metric Measure Spaces, an Approach Based on Upper Gradients, DOI DOI 10.1017/CBO9781316135914
[9]   Regularity of the inverse of a planar Sobolev homeomorphism [J].
Hencl, S ;
Koskela, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :75-95
[10]  
Hencl S, 2014, LECT NOTES MATH, V2096, P1, DOI 10.1007/978-3-319-03173-6