Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

被引:10
作者
Bologna, E. [1 ,2 ]
Graziano, F. [3 ]
Deseri, L. [4 ]
Zingales, M. [1 ,2 ]
机构
[1] Dipartimento Ingn Civile Ambientale Aerosp Mat, Viale Sci,Ed 8, I-90100 Palermo, Italy
[2] Adv Technol Network ATeN Ctr, Bio NanoMech Med Sci Lab BNM2 Lab, CHAB Pole, Viale Sci,Ed 18, I-90128 Palermo, Italy
[3] Policlin P Giaccone, Via Vespro, Palermo, Italy
[4] Univ Trento, Dept Civil Environm & Mech Engineer, DICAM, Via Mesiano 77, I-38123 Trento, Italy
关键词
Biomimetic materials; Cranioplasty; Fractional calculus; Power-law hereditariness; Isotropic hereditariness; THERMODYNAMICS; RESTRICTIONS; RELAXATION; SYSTEMS; MODEL;
D O I
10.1016/j.ijnonlinmec.2019.01.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 38 条
  • [1] Alotta G., 2018, J STRAIN ANAL ENG DE
  • [2] On the dynamics of non-local fractional viscoelastic beams under stochastic agencies
    Alotta, Gioacchino
    Di Paola, Mario
    Failla, Giuseppe
    Pinnola, Francesco Paolo
    [J]. COMPOSITES PART B-ENGINEERING, 2018, 137 : 102 - 110
  • [3] On the behavior of a three-dimensional fractional viscoelastic constitutive model
    Alotta, Gioacchino
    Barrera, Olga
    Cocks, Alan C. F.
    Di Paola, Mario
    [J]. MECCANICA, 2017, 52 (09) : 2127 - 2142
  • [4] [Anonymous], 1998, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
  • [5] BLAIR GWS, 1949, PHILOS MAG, V40, P80
  • [6] Bongiorno D, 2006, CZECH MATH J, V56, P559, DOI 10.1007/s10587-006-0037-1
  • [7] Riemann-type definition of the improper integrals
    Bongiorno, D
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (03) : 717 - 725
  • [8] Rolewicz-type chaotic operators
    Bongiorno, D.
    Darji, U. B.
    Di Piazza, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 518 - 528
  • [9] Burgers J., 1948, P INT RHEOL C
  • [10] Fractional derivatives in the diffusion process in heterogeneous systems: The case of transdermal patches
    Caputo, Michele
    Cametti, Cesare
    [J]. MATHEMATICAL BIOSCIENCES, 2017, 291 : 38 - 45