High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer

被引:113
作者
Li, Yongjin [1 ]
Shimizu, Hiroshi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Nanotechnol Res Inst, Tsukuba, Ibaraki 3058565, Japan
关键词
high-shear processing; carbon nanotube; nanocomposite;
D O I
10.1016/j.polymer.2007.02.066
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We report a high-shear processing technology that allows the homogenous dispersion of unmodified multiwalled carbon nanotubes (UMWNTs) in a thermoplastic elastomer, poly(styrene-b-butadiene-co-butylene-b-styrene) (SBBS). We demonstrated that the dispersion of UMWNTs in a polymer matrix depends greatly on the shear stress exerted during melt processing. Mechanical tests showed that the tensile modulus, tensile strength and elasticity of the composites with fine nanotube dispersion processed at a high-shear rate are much higher than those of the composites processed at a low shear rate. The results indicated that high-shear processing is an effective method of improving the dispersion of unmodified carbon nanotubes in a polymer matrix. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2203 / 2207
页数:5
相关论文
共 32 条
[1]   Nanotube composite carbon fibers [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Rantell, T ;
Derbyshire, F ;
Chen, Y ;
Chen, J ;
Haddon, RC .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1329-1331
[2]   In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering [J].
Badaire, S ;
Poulin, P ;
Maugey, M ;
Zakri, C .
LANGMUIR, 2004, 20 (24) :10367-10370
[3]   Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites [J].
Barrau, S ;
Demont, P ;
Perez, E ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (26) :9678-9680
[4]   Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite [J].
Bhattacharyya, AR ;
Sreekumar, TV ;
Liu, T ;
Kumar, S ;
Ericson, LM ;
Hauge, RH ;
Smalley, RE .
POLYMER, 2003, 44 (08) :2373-2377
[5]   Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J].
Cadek, M ;
Coleman, JN ;
Barron, V ;
Hedicke, K ;
Blau, WJ .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5123-5125
[6]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[7]   Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite [J].
Chang, TE ;
Jensen, LR ;
Kisliuk, A ;
Pipes, RB ;
Pyrz, R ;
Sokolov, AP .
POLYMER, 2005, 46 (02) :439-444
[8]  
Chawla K.K., 1987, COMPOSITE MAT SCI EN
[9]   In-situ X-ray deformation study of fluorinated multiwalled carbon nanotube and fluorinated ethylene-propylene nanocomposite fibers [J].
Chen, Xuming ;
Burger, Christian ;
Fang, Dufei ;
Sics, Igors ;
Wang, Xuefen ;
He, Weidong ;
Somani, Rajesh H. ;
Yoon, Kyunghwan ;
Hsiao, Benjamin S. ;
Chu, Benjamin .
MACROMOLECULES, 2006, 39 (16) :5427-5437
[10]   Nylon 6 nanocomposites by melt compounding [J].
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (03) :1083-1094