Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility

被引:13
作者
Guo, Yu [1 ,2 ]
Gao, Nan [1 ]
Bai, Yizhen [1 ]
Zhao, Jijun [1 ]
Zeng, Xiao Cheng [2 ,3 ,4 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China
[2] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[3] Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE 68588 USA
[4] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
2D GeAsSe and SnSbTe; carrier mobility; photocatalysts; DFT calculations; HIGH-ELECTRON-MOBILITY; OPTICAL-PROPERTIES; SILICENE; GRAPHENE;
D O I
10.1007/s11467-018-0810-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
High carrier mobility and a direct semiconducting band gap are two key properties of materials for electronic device applications. Using first-principles calculations, we predict two types of two-dimensional semiconductors, ultrathin GeAsSe and SnSbTe nanosheets, with desirable electronic and optical properties. Both GeAsSe and SnSbTe sheets are energetically favorable, with formation energies of -0.19 and -0.09 eV/atom, respectively, and have excellent dynamical and thermal stability, as determined by phonon dispersion calculations and Born-Oppenheimer molecular dynamics simulations. The relatively weak interlayer binding energies suggest that these monolayer sheets can be easily exfoliated from the bulk crystals. Importantly, monolayer GeAsSe and SnSbTe possess direct band gaps (2.56 and 1.96 eV, respectively) and superior hole mobility (similar to 20 000 cm(2)a (TM) V(-1)a (TM) s(-1)), and both exhibit notable absorption in the visible region. A comparison of the band edge positions with the redox potentials of water reveals that layered GeAsSe and SnSbTe are potential photocatalysts for water splitting. These exceptional properties make layered GeAsSe and SnSbTe promising candidates for use in future high-speed electronic and optoelectronic devices.
引用
收藏
页数:9
相关论文
共 57 条
[1]  
Ashok N., 2017, 2017 25 OPT FIB SENS
[2]  
Bandurin DA, 2017, NAT NANOTECHNOL, V12, P223, DOI [10.1038/nnano.2016.242, 10.1038/NNANO.2016.242]
[3]   BORN-OPPENHEIMER MOLECULAR-DYNAMICS SIMULATIONS OF FINITE SYSTEMS - STRUCTURE AND DYNAMICS OF (H2O)2 [J].
BARNETT, RN ;
LANDMAN, U .
PHYSICAL REVIEW B, 1993, 48 (04) :2081-2097
[4]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[5]   KRAMERS-KRONIG ANALYSIS OF THE REFLECTIVITY SPECTRA OF 2H-MOS2, 2H-MOSE2 AND 2H-MOTE2 [J].
BEAL, AR ;
HUGHES, HP .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (05) :881-890
[6]   Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride [J].
Bruzzone, Samantha ;
Fiori, Gianluca .
APPLIED PHYSICS LETTERS, 2011, 99 (22)
[7]   Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals [J].
Burns, Lori A. ;
Vazquez-Mayagoitia, Alvaro ;
Sumpter, Bobby G. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)
[8]   Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple [J].
Chakrapani, Vidhya ;
Angus, John C. ;
Anderson, Alfred B. ;
Wolter, Scott D. ;
Stoner, Brian R. ;
Sumanasekera, Gamini U. .
SCIENCE, 2007, 318 (5855) :1424-1430
[9]   Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility [J].
Dai, Jun ;
Zeng, Xiao Cheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (26) :7572-7576
[10]   Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS [J].
Fei, Ruixiang ;
Li, Wenbin ;
Li, Ju ;
Yang, Li .
APPLIED PHYSICS LETTERS, 2015, 107 (17)