Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

被引:21
作者
de Souza, Alisson C. D. [1 ]
Fernandes, Marcelo A. C. [1 ]
机构
[1] Fed Univ Rio Grande Norte UFRN, Dept Comp Engn & Automat, Ctr Technol, BR-59078970 Natal, RN, Brazil
关键词
artificial neural network; ANN; radial basis function; RBF; FPGA; fixed point; Simulink; system generator; ARTIFICIAL NEURAL-NETWORKS;
D O I
10.3390/s141018223
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.
引用
收藏
页码:18223 / 18243
页数:21
相关论文
共 31 条
[1]  
[Anonymous], INT C INF COMM TECHN
[2]  
[Anonymous], 2009, P 2009 5 INT C SOFT
[3]  
[Anonymous], P 7 INT C LANG RES E
[4]  
Brassai ST, 2008, PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL IV, P41
[5]   Channel Equalization Using Neural Networks: A Review [J].
Burse, Kavita ;
Yadav, R. N. ;
Shrivastava, S. C. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2010, 40 (03) :352-357
[6]   Artificial neural networks: a review of commercial hardware [J].
Dias, FM ;
Antunes, A ;
Mota, AM .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (08) :945-952
[7]   Efficient VLSI Architecture for Training Radial Basis Function Networks [J].
Fan, Zhe-Cheng ;
Hwang, Wen-Jyi .
SENSORS, 2013, 13 (03) :3848-3877
[8]  
HARIPRASATH S, 2012, 2012 INT C COMP COMM, P1, DOI DOI 10.1109/ICSSBE.2012.6396622
[9]  
Hassan A. A., 2008, 2008 International Conference on Computer Engineering & Systems (ICCES '08), P268, DOI 10.1109/ICCES.2008.4773010
[10]  
Haykin S., 1996, Adaptive filter theory